Learn More
The purpose of this study was to determine if changes in triceps-surae tendon stiffness (TST K) could affect running economy (RE) in highly trained distance runners. The intent was to induce increased TST K in a subgroup of runners by an added isometric training program. If TST K is a primary determinant of RE, then the energy cost of running (EC) should(More)
The purpose of this study was to determine the interaction of three factors that modify twitch contraction amplitude in the rat gastrocnemius muscle in situ: posttetanic potentiation, fatigue, and caffeine. Posttetanic (200 Hz for 1 s) twitch responses were observed before and after 15 Hz stimulation for 6 min (group FS), injection of caffeine (75 mg/kg(More)
The sliding filament and cross-bridge theories of muscle contraction provide discrete predictions of the tetanic force-length relationship of skeletal muscle that have been tested experimentally. The active force generated by a maximally activated single fiber (with sarcomere length control) is maximal when the filament overlap is optimized and is(More)
PURPOSE The purpose of this study was twofold: 1) to determine whether elite male golfers with chronic low back pain (CLBP) exhibit different abdominal muscle activity patterns during the golf swing than asymptomatic control (AC) golfers and 2) to determine whether elite male golfers with CLBP experience greater fatigue in the abdominal muscles than AC(More)
Repetitive activation of a skeletal muscle results in potentiation of the twitch contractile response. Incompletely fused tetanic contractions similar to those evoked by voluntary activation may also be potentiated by prior activity. We aimed to investigate the role of stimulation frequency on the enhancement of unfused isometric contractions in rat medial(More)
With a single activation, a skeletal muscle fiber, motor unit or whole muscle will yield a twitch contraction. The twitch is not an "all-or-none" response, but a submaximal response that can vary from one time to another. Prior activation causes myosin regulatory light chain (RLC) phosphorylation, by an enzyme called myosin light chain kinase. This(More)
Skeletal muscle force production following repetitive contractions is preferentially reduced when muscle is evaluated with low-frequency stimulation. This selective impairment in force generation is called low-frequency fatigue (LFF) and could be dependent on the contraction type. The purpose of this study was to compare LFF after concentric and eccentric(More)
The purpose of this study was to choose between two popular models of skeletal muscle: one with the parallel elastic component in parallel with both the contractile element and the series elastic component (model A), and the other in which it is in parallel with only the contractile element (model B). Passive and total forces were obtained at a variety of(More)
Twitch potentiation and fatigue in skeletal muscle are two conditions in which force production is affected by the stimulation history. Twitch potentiation is the increase in the twitch active force observed after a tetanic contraction or during and following low-frequency stimulation. There is evidence that the mechanism responsible for potentiation is(More)
Previously we have demonstrated that the absence of staircase potentiation in atrophied rat gastrocnemius muscle is accompanied by a virtual absence of phosphorylation of the regulatory light chains (R-LC) of myosin. It was our purpose in the present study to determine if posttetanic potentiation and corresponding R-LC phosphorylation were also attenuated(More)