Brian M. G. Janssen

Learn More
Oligonucleotide-based molecular circuits offer the exciting possibility to introduce autonomous signal processing in biomedicine, synthetic biology, and molecular diagnostics. Here we introduce bivalent peptide-DNA conjugates as generic, noncovalent, and easily applicable molecular locks that allow the control of antibody activity using toehold-mediated(More)
The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py-Im) polyamides,(More)
DNA-templated reversible assembly of an enzyme-inhibitor complex is presented as a new and highly modular approach to control enzyme activity. TEM1-β-lactamase and its inhibitor protein BLIP were conjugated to different oligonucleotides, resulting in enzyme inhibition in the presence of template strand. Formation of a rigid dsDNA linker upon addition of a(More)
Meditopes are cyclic peptides that bind in a specific pocket in the antigen-binding fragment of a therapeutic antibody such as cetuximab. Provided their moderate affinity can be enhanced, meditope peptides could be used as specific non-covalent and paratope-independent handles in targeted drug delivery, molecular imaging, and therapeutic drug monitoring.(More)
We previously reported the development of high affinity Zn(2+) FRET sensors based on the Zn(2+)-mediated interaction between the CXXC motifs present in the copper chaperone proteins ATOX1 and WD4. By systematically substituting several of these cysteines for methionines, we constructed sensor variants that retain a high affinity for Cu(+), while effectively(More)
  • 1