Learn More
Orexins are peptides produced by lateral hypothalamic neurons that exert a prominent role in the maintenance of wakefulness by activating orexin-1 (OX1R) and orexin-2 (OX2R) receptor located in wake-active structures. Pharmacological blockade of both receptors by the dual OX1/2R antagonist(More)
1 1-[4-(3-piperidin-1-yl-propoxy)-benzyl]-piperidine (JNJ-5207852) is a novel, non-imidazole histamine H3 receptor antagonist, with high affinity at the rat (pKi=8.9) and human (pKi=9.24) H3 receptor. JNJ-5207852 is selective for the H3 receptor, with negligible binding to other receptors, transporters and ion channels at 1 microm. 2 JNJ-5207852 readily(More)
High throughput screening using the recombinant human TRPV1 receptor was used to identify a series of pyridinylpiperazine ureas (3) as TRPV1 vanilloid receptor ligands. Exploration of the structure-activity relationships by parallel synthesis identified the essential pharmacophoric elements for antagonism that permitted further optimization via targeted(More)
Evidence has accumulated supporting a role for 5-hydroxytryptamine (5-HT)7 receptors in circadian rhythms, sleep, and mood disorders, presumably as a consequence of the modulation of 5-HT-mediated neuronal activity. We hypothesized that a selective 5-HT7 receptor antagonist, (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]-pyrrolidine(More)
BACKGROUND AND PURPOSE An increasing body of evidence suggests that the purinergic receptor P2X, ligand-gated ion channel, 7 (P2X7) in the CNS may play a key role in neuropsychiatry, neurodegeneration and chronic pain. In this study, we characterized JNJ-47965567, a centrally permeable, high-affinity, selective P2X7 antagonist. EXPERIMENTAL APPROACH We(More)
The in vitro pharmacological properties of N-(1-Acetyl-2,3-dihydro-1H-indol-6-yl)-3-(3-cyano-phenyl)-N-[1-(2-cyclopentyl-ethyl)-piperidin-4yl]-acrylamide (JNJ-5207787), a novel neuropeptide Y Y(2) receptor (Y(2)) antagonist, were evaluated. JNJ-5207787 inhibited the binding of peptide YY (PYY) to human Y(2) receptor in KAN-Ts cells (pIC(50) = 7.00 +/- 0.10)(More)
The successful cloning and functional expression of the histamine H(3) receptor in the late 1990 s has greatly facilitated our efforts to identify small molecule, non-imidazole based compounds to permit the evaluation of H(3) antagonists in models of CNS disorders. High-throughput screening identified several series of lead compounds, including a series of(More)
Triple reuptake inhibitors, which block the serotonin transporter (SERT), norepinephrine transporter (NET) and dopamine transporter (DAT) in the central nervous system have been described as therapeutic alternatives for classical selective serotonin reuptake inhibitors, with advantages due to their multiple mechanisms of action. JNJ-7925476(More)
A few recent studies suggest that brain histamine levels and signaling via H3 receptors play an important role in modulation of alcohol stimulation and reward in rodents. The present study characterized the effects of a novel, selective, and brain penetrant H3 receptor antagonist (JNJ-39220675) on the reinforcing effects of alcohol in rats. The effect of(More)
The synthesis and preclinical characterization of two novel, brain penetrating P2X7 compounds will be described. Both compounds are shown to be high potency P2X7 antagonists in human, rat, and mouse cell lines and both were shown to have high brain concentrations and robust receptor occupancy in rat. Compound 7 is of particular interest as a probe compound(More)