A John Hart8
Namiko Yamamoto7
Itai Y Stein3
Enrique J Garcia3
8A John Hart
7Namiko Yamamoto
Learn More
Nanostructured composites containing aligned carbon nanotubes (CNTs) are very promising as interface materials for electronic systems and thermoelectric power generators. We report the first data for the thermal conductivity of densified, aligned multiwall CNT nanocomposite films for a range of CNT volume fractions. A 1 vol % CNT composite more than doubles(More)
  • Dhimiter Bello, Brian L Wardle, Ae Namiko, Yamamoto Ae, Roberto Guzman, Devilloria Ae +7 others
  • 2008
This study investigated airborne exposures to nanoscale particles and fibers generated during dry and wet abrasive machining of two three-phase advanced composite systems containing carbon nanotubes (CNTs), micron-diameter continuous fibers (carbon or alumina), and thermoset polymer matrices. Exposures were evaluated with a suite of complementary(More)
  • Dhimiter Bello, A John Hart, Kwangseog Ahn, Marilyn Hallock, Namiko Yamamoto, Enrique J Garcia +3 others
  • 2008
Carbon nanotubes (CNTs) are being researched worldwide to create countless new technologies [1,2], including transistors , solar cells, biomaterials, and hybrid advanced composites [3–7]. Concerns exist about the possibility of nanoscale particle release, notably release of CNTs and catalyst particles , during CNT growth and subsequent handling and(More)
  • Enrique J Garcia, Brian L Wardle, A John Hart, Namiko Yamamoto, B L Wardle
  • 2008
A hybrid composite architecture of carbon nanotubes (CNTs), advanced fibers and a matrix is described, from CNT synthesis and characterization through to standard mechanical and electrical laminate tests. Direct growth of aligned CNTs on the surface of advanced fibers in a woven fabric enables enhancement in multifunctional laminate performance, as(More)
Hybrid composite architectures employing traditional advanced composites and carbon nanotubes offer significant potential mechanical and multifunctional performance benefits. The architecture investigated here is composed of aligned fibers with carbon nanotubes grown radially on their surface. A novel process for rapidly growing dense, long, high-quality,(More)
Aligned CNT nanocomposites with variable volume fraction, up to 20%, are demonstrated. Biaxial mechanical densification of aligned CNT forests, followed by capillarity-driven wetting using unmodified aerospace-grade polymers, creates centimeter-scale specimens. Characterizations confirm CNT alignment and dispersion in the thermosets, providing a useful(More)
The exceptional electronic, thermal, and mechanical properties of carbon nanotubes (CNTs) have motivated extensive research on their manufacturing and applications. At bulk scales, there is particular interest in property enhancements by adding CNTs to polymers to make composite materials. Most work on CNT-based composites presented in the literature to(More)
Directional thermal conductivities of aligned carbon nanotube (CNT) polymer nanocomposites were calculated using a random walk simulation with and without inter-CNT contact effects. The CNT contact effect has not been explored for its role in thermal transport, and it is shown here to significantly affect the effective transport properties including(More)
We report that nanoparticulate zirconia (ZrO(2)) catalyzes both growth of single-wall and multiwall carbon nanotubes (CNTs) by thermal chemical vapor deposition (CVD) and graphitization of solid amorphous carbon. We observe that silica-, silicon nitride-, and alumina-supported zirconia on silicon nucleates single- and multiwall carbon nanotubes upon(More)
Non-destructive evaluation techniques can offer viable diagnostic and prognostic routes to mitigating failures in engineered structures such as bridges, buildings and vehicles. However, existing techniques have significant drawbacks, including poor spatial resolution and limited in situ capabilities. We report here a novel approach where structural advanced(More)