Learn More
In this paper, we present an information-theoretic approach to learning a Mahalanobis distance function. We formulate the problem as that of minimizing the differential relative entropy between two multivariate Gaussians under constraints on the distance function. We express this problem as a particular Bregman optimization problem---that of minimizing the(More)
Domain adaptation is an important emerging topic in computer vision. In this paper, we present one of the first studies of domain shift in the context of object recognition. We introduce a method that adapts object models acquired in a particular visual domain to new imaging conditions by learning a transformation that minimizes the effect of domain-induced(More)
Fast retrieval methods are critical for large-scale and data-driven vision applications. Recent work has explored ways to embed high-dimensional features or complex distance functions into a low-dimensional Hamming space where items can be efficiently searched. However, existing methods do not apply for high-dimensional kernelized data when the underlying(More)
In real-world applications, “what you saw” during training is often not “what you get” during deployment: the distribution and even the type and dimensionality of features can change from one dataset to the next. In this paper, we address the problem of visual domain adaptation for transferring object models from one dataset or visual domain to another. We(More)
A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions used in these seemingly different methods - in particular, a general weighted kernel k-means objective is(More)
Kernel <i>k</i>-means and spectral clustering have both been used to identify clusters that are non-linearly separable in input space. Despite significant research, these methods have remained only loosely related. In this paper, we give an explicit theoretical connection between them. We show the generality of the weighted kernel <i>k</i>-means objective(More)
Semi-supervised clustering algorithms aim to improve clustering results using limited supervision. The supervision is generally given as pairwise constraints; such constraints are natural for graphs, yet most semi-supervised clustering algorithms are designed for data represented as vectors. In this paper, we unify vector-based and graph-based approaches.(More)
Fast retrieval methods are critical for many large-scale and data-driven vision applications. Recent work has explored ways to embed high-dimensional features or complex distance functions into a low-dimensional Hamming space where items can be efficiently searched. However, existing methods do not apply for high-dimensional kernelized data when the(More)
Bayesian models offer great flexibility for clustering applications—Bayesian nonparametrics can be used for modeling infinite mixtures, and hierarchical Bayesian models can be utilized for sharing clusters across multiple data sets. For the most part, such flexibility is lacking in classical clustering methods such as k-means. In this paper, we revisit the(More)