Brian K. Mok

Learn More
With automated driving systems, drivers may still be expected to resume full control of the vehicle. While structured transitions where drivers are given warning are desirable, it is critical to benchmark how drivers perform when transition of control is unstructured and occurs without advanced warning. In this study, we observed how participants (N=27) in(More)
This paper describes our approach to designing, developing behaviors for, and exploring the use of, a robotic footstool, which we named the mechanical ottoman. By approaching unsuspecting participants and attempting to get them to place their feet on the footstool, and then later attempting to break the engagement and get people to take their feet down, we(More)
In future automated driving systems, drivers will be free to perform other secondary tasks, not needing to stay vigilant in monitoring the car's activity. However, there will still be situations in which drivers are required to take-over control of the vehicle, most likely from a highly distracted state. While highly automated vehicles would ideally(More)
How will pedestrians and cyclists interact with self-driving cars when there is no human driver? To find answers to this question we need a secure experimental design in which pedestrians can interact with a car that appears to drive on its own. In Ghost Driver we staged a fake autonomous car by installing LIDARs, cameras and decals on the outside of the(More)
There is a growing need to study the interactions between drivers and their increasingly autonomous vehicles. This paper describes a method of using a low-cost, portable, and versatile driver interaction system in commercial passenger vehicles to enable on-road partial and fully autonomous driving interaction studies. By conducting on-road Wizard-of-Oz(More)