Learn More
—Resonant clock distributions have the potential to save power by recycling energy from cycle-to-cycle while at the same time improving performance by reducing the clock distribution latency and filtering out non-periodic noise. While these features have been successfully demonstrated in several small-scale experiments, there remained a number of concerns(More)
A 32b 4-way SIMD dual-issue synergistic processor element of a CELL processor is developed with 20.9 million transistors in 14.8mm/sup 2/ using a 90nm SOI technology. CMOS static gates implement the majority of the logic. Dynamic circuits are used in critical areas, occupying 19% of the nonSRAM area. ISA, microarchitecture and physical implementation are(More)
This paper presents a design methodology emphasizing early and quick timing closure for high frequency microprocessor designs. This methodology was used to design a Gigahertz class PowerPC microprocessor with 19 million transistors. Characteristics of " Timing Closure by Design " are 1) logic partitioned on timing boundaries, 2) predictable control(More)
This paper describes the architecture and implementation of the original gaming-oriented synergistic processor element (SPE) in both 90-nm and 65-nm silicon-on-insulator (SOI) technology and introduces a new SPE implementation targeted for the high-performance computing community. The Cell Broadband Enginee processor contains eight SPEs. The dual-issue,(More)