Brian K. Erickson

Learn More
Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86%(More)
Multiplexed quantitation via isobaric chemical tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantitation (iTRAQ)) has the potential to revolutionize quantitative proteomics. However, until recently the utility of these tags was questionable due to reporter ion ratio distortion resulting from fragmentation of coisolated(More)
The composition of the nucleoplasm determines the behavior of key processes such as transcription, yet there is still no reliable and quantitative resource of nuclear proteins. Furthermore, it is still unclear how the distinct nuclear and cytoplasmic compositions are maintained. To describe the nuclear proteome quantitatively, we isolated the large nuclei(More)
Thermogenic brown and beige adipose tissues dissipate chemical energy as heat, and their thermogenic activities can combat obesity and diabetes. Herein the functional adaptations to cold of brown and beige adipose depots are examined using quantitative mitochondrial proteomics. We identify arginine/creatine metabolism as a beige adipose signature and(More)
The 5′ untranslated regions (UTR) of chloroplast mRNAs often contain regulatory sequences that control RNA stability and/or translation. The petD chloroplast mRNA in Chlamydomonas reinhardtii has three such essential regulatory elements in its 362-nt long 5′ UTR. To further analyze these elements, we compared 5′ UTR sequences from four Chlamydomonas species(More)
Accurate protein identification in large-scale proteomics experiments relies upon a detailed, accurate protein catalogue, which is derived from predictions of open reading frames based on genome sequence data. Integration of mass spectrometry-based proteomics data with computational proteome predictions from environmental metagenomic sequences has been(More)
Many methods of microbial proteome characterizations require large quantities of cellular biomass (>1-2 g) for sample preparation and protein identification. Our experimental approach differs from traditional techniques by providing the ability to identify the proteomic state of a microbe from a few milligrams of starting cellular material. The small-scale,(More)
The expression of chloroplast and mitochondrial genes depends on nucleus-encoded proteins, some of which control processing, stability, and/or translation of organellar RNAs. To test the specificity of one such RNA stability factor, we used two known Chlamydomonas reinhardtii nonphotosynthetic mutants carrying mutations in the Mcd1 nuclear gene (mcd1-1 and(More)
The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet. In this study, gnotobiotic mice were colonized with an artificial microbiota comprising 12 sequenced human gut bacterial species and fed(More)
Brown and beige adipose tissues can dissipate chemical energy as heat through thermogenic respiration, which requires uncoupling protein 1 (UCP1). Thermogenesis from these adipocytes can combat obesity and diabetes, encouraging investigation of factors that control UCP1-dependent respiration in vivo. Here we show that acutely activated thermogenesis in(More)