Learn More
L-glutamate (Glu) is the predominant excitatory neurotransmitter in the mammalian central nervous system. It plays major roles in normal neurophysiology and many brain disorders by binding to membrane-bound Glu receptors. To overcome the spatial and temporal limitations encountered in previous in vivo extracellular Glu studies, we employed enzyme-coated(More)
This paper describes improvements and further characterization of a ceramic-based multisite microelectrode for in vivo measurements of L-glutamate. Improvements include increased recording area, insulation deposition using photolithography for more uniform recording sites and forming the microelectrodes using a diamond saw providing smoother microelectrode(More)
l-glutamate (glutamate) is the principal excitatory neurotransmitter of the central nervous system and is involved in altered neural function during aging and in neurodegenerative diseases. Relatively little is known about the mechanisms of glutamate signaling in the primate brain, in part, because there is an absence of a method capable of rapidly(More)
Preclinical and clinical studies have demonstrated the significance of inflammation and autoantibodies in epilepsy, and the use of immunotherapies in certain situations has become an established practice. Temporal lobe epilepsy can follow paraneoplastic or nonparaneoplastic limbic encephalitis associated with antibodies directed against brain antigens.(More)
  • 1