Learn More
The response of tropical cyclone activity to global warming is widely debated. It is often assumed that warmer sea surface temperatures provide a more favourable environment for the development and intensification of tropical cyclones, but cyclone genesis and intensity are also affected by the vertical thermodynamic properties of the atmosphere. Here we use(More)
In an El Niño event, positive SST anomalies usually appear in remote ocean basins such as the South China Sea, the Indian Ocean, and the tropical North Atlantic approximately 3 to 6 months after SST anomalies peak in the tropical Pacific. Ship data from 1952 to 1992 and satellite data from the 1980s both demonstrate that changes in atmospheric circulation(More)
The sensitivity of Earth's climate to an external radiative forcing depends critically on the response of water vapor. We use the global cooling and drying of the atmosphere that was observed after the eruption of Mount Pinatubo to test model predictions of the climate feedback from water vapor. Here, we first highlight the success of the model in(More)
s Abstract Water vapor is the dominant greenhouse gas, the most important gaseous source of infrared opacity in the atmosphere. As the concentrations of other greenhouse gases, particularly carbon dioxide, increase because of human activity, it is centrally important to predict how the water vapor distribution will be affected. To the extent that water(More)
  • Sandrine Bony, Vladimir M Kattsov, Richard P Allan, Christopher S Bretherton, Marika M Holland, William Ingram +4 others
  • 2005
Processes in the climate system that can either amplify or dampen the climate response to an external perturbation are referred to as climate feedbacks. Climate sensitivity estimates depend critically on radia-tive feedbacks associated with water vapor, lapse rate, clouds, snow, and sea ice, and global estimates of these feedbacks differ among general(More)
Uncertainty in cloud feedback is the leading cause of discrepancy in model predictions of climate change. The use of observed or model-simulated radiative fluxes to diagnose the effect of clouds on climate sensitivity requires an accurate understanding of the distinction between a change in cloud radiative forcing and a cloud feedback. This study compares(More)
Since the mid-nineteenth century the Earth's surface has warmed, and models indicate that human activities have caused part of the warming by altering the radiative balance of the atmosphere. Simple theories suggest that global warming will reduce the strength of the mean tropical atmospheric circulation. An important aspect of this tropical circulation is(More)
  • Brian J Soden, Isaac M Held, Robert Colman, Karen M Shell, Jeffrey T Kiehl, Christine A Shields
  • 2008
The extent to which the climate will change due to an external forcing depends largely on radiative feedbacks, which act to amplify or damp the surface temperature response. There are a variety of issues that complicate the analysis of radiative feedbacks in global climate models, resulting in some confusion regarding their strengths and distributions. In(More)