Brian J Haugen

Learn More
A uropathogenic Escherichia coli strain CFT073-specific DNA microarray that includes each open reading frame was used to analyze the transcriptome of CFT073 bacteria isolated directly from the urine of infected CBA/J mice. The in vivo expression profiles were compared to that of E. coli CFT073 grown statically to exponential phase in rich medium, revealing(More)
A D-serine deaminase (DsdA) mutant of uropathogenic Escherichia coli strain CFT073 has a hypercolonization phenotype in a murine model of urinary tract infection (UTI) due to increased virulence gene expression by an unknown mechanism (B. J. Haugen et al., Infect. Immun. 75:278-289, 2007). DsdC is a D-serine-dependent activator of dsdXA transcription. DsdC(More)
Deletional inactivation of the gene encoding d-serine deaminase, dsdA, in uropathogenic Escherichia coli strain CFT073 results in a hypermotile strain with a hypercolonization phenotype in the bladder and kidneys of mice in a model of urinary tract infection (UTI). The in vivo gene expression profiles of CFT073 and CFT073 dsdA were compared by isolating RNA(More)
Uropathogenic Escherichia coli is the most common etiological agent of urinary tract infections. Bacteria can often express multiple adhesins during infection in order to favor attachment to specific niches within the urinary tract. We have recently demonstrated that type 1 fimbria, a phase-variable virulence factor involved in adherence, was the most(More)
Although once thought to be unique to bacteria, d-amino acids are also produced by mammals. For example, d-serine is excreted in human urine at concentrations ranging from 3.0 to 40 micro g ml-1. An epidemiological survey demonstrated that urine isolates of E. coli are more likely to catabolise d-serine via expression of d-serine deaminase, DsdA than(More)
In vivo accumulation of D-serine by Escherichia coli CFT073 leads to elevated expression of PAP fimbriae and hemolysin by an unknown mechanism. Loss of D-serine catabolism by CFT073 leads to a competitive advantage during murine urinary tract infection (UTI), but loss of both D- and L-serine catabolism results in attenuation. Serine is the first amino acid(More)
  • 1