Brian J. Burke

Learn More
The nuclear envelope defines the barrier between the nucleus and cytoplasm and features inner and outer membranes separated by a perinuclear space (PNS). The inner nuclear membrane contains specific integral proteins that include Sun1 and Sun2. Although the outer nuclear membrane (ONM) is continuous with the endoplasmic reticulum, it is nevertheless(More)
The nuclear lamina is a protein meshwork lining the nucleoplasmic face of the inner nuclear membrane and represents an important determinant of interphase nuclear architecture. Its major components are the A- and B-type lamins. Whereas B-type lamins are found in all mammalian cells, A-type lamin expression is developmentally regulated. In the mouse, A-type(More)
Fluorescence light microscopy allows multicolor visualization of cellular components with high specificity, but its utility has until recently been constrained by the intrinsic limit of spatial resolution. We applied three-dimensional structured illumination microscopy (3D-SIM) to circumvent this limit and to study the mammalian nucleus. By simultaneously(More)
We have developed a new technique for proximity-dependent labeling of proteins in eukaryotic cells. Named BioID for proximity-dependent biotin identification, this approach is based on fusion of a promiscuous Escherichia coli biotin protein ligase to a targeting protein. BioID features proximity-dependent biotinylation of proteins that are near-neighbors of(More)
Nup153 is a large (153 kD) O-linked glyco-protein which is a component of the basket structure located on the nucleoplasmic face of nuclear pore complexes. This protein exhibits a tripartite structure consisting of a zinc finger domain flanked by large (60-70 kD) NH2- and COOH-terminal domains. When full-length human Nup153 is expressed in BHK cells, it(More)
During prophase in higher cells, centrosomes localize to deep invaginations in the nuclear envelope in a microtubule-dependent process. Loss of nuclear membranes in prometaphase commences in regions of the nuclear envelope that lie outside of these invaginations. Dynein and dynactin complex components concentrate on the nuclear envelope prior to any changes(More)
We have used antibodies directed against a number of nuclear pore complex (NPC) proteins to determine their mutual interactions and location within the three-dimensional structure of the NPC. A monoclonal antibody, termed QE5, recognized three NPC polypeptides, p250, NUP153, and p62 on Western blots, and labeled the nuclear envelope of several cultured cell(More)
We described a cell free system involving total homogenates of metaphase CHO cells, which yields telophase-like assembly of nuclear envelopes around mitotic chromosomes. During formation of the nuclear envelope in vitro, the three major lamina polypeptides (lamins A, B, and C) assemble around chromosomes and become dephosphorylated, similar to their(More)
Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin-Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1-3 identified(More)
Nuclear pore complexes (NPCs) are extremely elaborate structures that mediate the bidirectional movement of macromolecules between the nucleus and cytoplasm. With a mass of about 125 MDa, NPCs are thought to be composed of 50 or more distinct protein subunits, each present in multiple copies. During mitosis in higher cells the nuclear envelope is(More)