Learn More
A thin cirrus cloud thermal infrared radiative transfer model has been developed for application to cloudy satellite data assimilation. This radiation model was constructed by combining the Optical Path Transmit-tance (OPTRAN) model, developed for the speedy calculation of transmittances in clear atmospheres, and a thin cirrus cloud parameterization using a(More)
[1] The new generation of remote sensors on board NASA's A‐Train constellation offers the possibility of observing the atmospheric boundary layer in different regimes, with or without clouds. In this study we use data from the Atmospheric InfraRed Sounder (AIRS) and of the Rain In Cumulus over the Ocean (RICO) campaign, to verify the accuracy and precision(More)
[1] We compare matched retrievals of upper tropospheric water vapor (UTWV) mixing ratios from the Microwave Limb Sounder (MLS) instrument on the Aura satellite, and the Atmospheric Infrared Sounder (AIRS) instrument on the Aqua satellite. Because each instrument's sampling is affected by tropical conditions, about half of mutually observed scenes in the(More)
A set of simulated high-resolution infrared (IR) emission spectra of synthetic cirrus clouds is used to perform a sensitivity analysis of top-of-atmosphere (TOA) radiance to cloud parameters. Principal component analysis (PCA) is applied to assess the variability of radiance across the spectrum with respect to microphysical and bulk cloud quantities. These(More)
Global observations of cloud and humidity distributions in the upper troposphere within all geophysical conditions are critically important in order to monitor the present climate and to provide necessary data for validation of climate models to project future climate change. Towards this end, tropical oceanic distributions of thin cirrus optical depth (τ),(More)
Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these(More)