Brian G Forde

Learn More
The development of plant root systems is sensitive to the availability and distribution of nutrients within the soil. For example, lateral roots proliferate preferentially within nitrate (NO3-)-rich soil patches. A NO3--inducible Arabidopsis gene (ANR1), was identified that encodes a member of the MADS box family of transcription factors. Transgenic plants(More)
Root development is extremely sensitive to variations in nutrient supply, but the mechanisms are poorly understood. We have investigated the processes by which nitrate (NO3-), depending on its availability and distribution, can have both positive and negative effects on the development and growth of lateral roots. When Arabidopsis roots were exposed to a(More)
Glutamate occupies a central position in amino acid metabolism in plants. The acidic amino acid is formed by the action of glutamate synthase, utilizing glutamine and 2-oxoglutarate. However, glutamate is also the substrate for the synthesis of glutamine from ammonia, catalysed by glutamine synthetase. The alpha-amino group of glutamate may be transferred(More)
Nitrate is the major source of nitrogen (N) for plants growing in aerobic soils. However, the NO3- ion is also used by plants as a signal to reprogram plant metabolism and to trigger changes in plant architecture. A striking example is the way that a root system can react to a localized source of NO3- by activating the NO3- uptake system and proliferating(More)
Physiological studies have established that plants acquire their NO(-3) from the soil through the combined activities of a set of high- and low-affinity NO(-3) transport systems, with the influx of NO(-3) being driven by the H(+) gradient across the plasma membrane. Some of these NO(-3) transport systems are constitutively expressed, while others are(More)
The B-hordeins are the major group of prolamin storage proteins in barley (Hordeum vulgare L.) and they are encoded by a small multigene family that is expressed specifically in the developing endosperm. We report the complete nucleotide sequence of a clone of one B-hordein gene (pBHR184). The cloned gene contains no introns and belongs to the B1 sub-family(More)
Plant nutrition critically depends on the activity of membrane transporters that translocate minerals from the soil into the plant and are responsible for their intra- and intercellular distribution. Most plant membrane transporters are encoded by multigene families whose members often exhibit overlapping expression patterns and a high degree of sequence(More)
The major storage proteins (prolamins) of barley, rye and wheat are characterized by the presence of two or more unrelated structural domains, one of which contains repeated sequences. Because of this repetitive structure and their restricted distribution (only in grasses), it has been suggested that the prolamins are of recent origin. Contrary to this(More)
When the root systems of many plant species are exposed to a localized source of nitrate (NO3- they respond by proliferating their lateral roots to colonize the nutrient-rich zone. This study reviews recent work with Arabidopsis thaliana in which molecular genetic approaches are being used to try to understand the physiological and genetic basis for this(More)
Apically derived auxin has long been known to inhibit lateral bud growth, but since it appears not to enter the bud, it has been proposed that its inhibitory effect is mediated by a second messenger. Candidates include the plant hormones ethylene, cytokinin and abscisic acid. We have developed a new assay to study this phenomenon using the model plant(More)