Learn More
We propose a method for accurately tracking the spatial motion of standard laparoscopic instruments from video. By exploiting the geometric and photometric invariants common to standard FLS training boxes, the method provides robust and accurate tracking of instruments from video. The proposed method requires no modifications to the standard FLS training(More)
BACKGROUND Despite technological advances in the tracking of surgical motions, automatic evaluation of laparoscopic skills remains remote. A new method is proposed that combines multiple discrete motion analysis metrics. This new method is compared with previously proposed metric combination methods and shown to provide greater ability for classifying(More)
Dynamic simulation is a promising complement to kinematic motion synthesis, particularly in cases where simulated characters need to respond to unpredictable interactions. Moving beyond simple rag-doll effects, though, requires dynamic control. The main issue with dynamic control is that there are no standardized techniques that allow an animator to(More)
BACKGROUND Despite widespread use of electrosurgical instruments, there are no widely accepted tasks for training and evaluation of technical skills. The purpose of this study is to propose a set of tasks and report experts' evaluations of the proposed tasks for validity, technical skills versus knowledge requirements, and utility for future privileging(More)
Fluid bipedal locomotion remains a significant challenge for humanoid robotics. Recent bio-inspired approaches have made significant progress by using small numbers of tightly coupled neurons, called central pattern generators (CPGs). Our approach exchanges complexity of the neuron model for complexity of the network, gradually building a network of simple(More)
The size of crowds that modern computer games and urban simulations are capable of handling has given rise to the challenging problem of debugging and testing massive simulations of autonomous agents. In this paper, we propose SteerBug: an interactive framework for specifying and detecting steering behaviors. Our framework computes a set of time-varying(More)
We introduce a toolkit for creating dynamic controllers for articulated characters under physical simulation. Our toolkit allows users to create dynamic controllers for interactive or offline use through a combination of both visual and scripting tools. Users can design controllers by specifying keyframe poses, using a high-level scripting language, or by(More)
We describe in this paper a training system for minimally invasive surgery (MIS) that creates an immersive training simulation by recording the pathways of the instruments from an expert surgeon while performing an actual training task. Instrument spatial pathway data is stored and later accessed at the training station in order to visualize the ergonomic(More)