Learn More
The organization of chromatin into higher-order structures influences chromosome function and epigenetic gene regulation. Higher-order chromatin has been proposed to be nucleated by the covalent modification of histone tails and the subsequent establishment of chromosomal subdomains by non-histone modifier factors. Here we show that human SUV39H1 and murine(More)
Histone proteins and the nucleosomes they form with DNA are the fundamental building blocks of eukaryotic chromatin. A diverse array of post-translational modifications that often occur on tail domains of these proteins has been well documented. Although the function of these highly conserved modifications has remained elusive, converging biochemical and(More)
The assembly of higher order chromatin structures has been linked to the covalent modifications of histone tails. We provide in vivo evidence that lysine 9 of histone H3 (H3 Lys9) is preferentially methylated by the Clr4 protein at heterochromatin-associated regions in fission yeast. Both the conserved chromo- and SET domains of Clr4 are required for H3(More)
The identification of nuclease-hypersensitive sites in an active globin gene and in the 5' regions of fruit fly heat shock genes first suggested that chromatin changes accompany gene regulation in vivo. Here we present evidence that the basic repeating units of eukaryotic chromatin, nucleosomes, are depleted from active regulatory elements throughout the(More)
Set2 (KMT3)-dependent methylation (me) of histone H3 at lysine 36 (H3K36) promotes deacetylation of transcribed chromatin and represses cryptic promoters within genes. Although Set2 is the only methyltransferase (KMTase) for H3K36 in yeast, it is not known if Set2 is regulated or whether the different methylation states at H3K36 are functionally distinct.(More)
The yeast histone deacetylase Rpd3 can be recruited to promoters to repress transcription initiation. Biochemical, genetic, and gene-expression analyses show that Rpd3 exists in two distinct complexes. The smaller complex, Rpd3C(S), shares Sin3 and Ume1 with Rpd3C(L) but contains the unique subunits Rco1 and Eaf3. Rpd3C(S) mutants exhibit phenotypes(More)
Recent studies of histone methylation have yielded fundamental new insights pertaining to the role of this modification in gene activation as well as in gene silencing. While a number of methylation sites are known to occur on histones, only limited information exists regarding the relevant enzymes that mediate these methylation events. We thus sought to(More)
Acetylation of core histone tails plays a fundamental role in transcription regulation. In addition to acetylation, other posttranslational modifications, such as phosphorylation and methylation, occur in core histone tails. Here, we report the purification, molecular identification, and functional characterization of a histone H4-specific methyltransferase(More)
In the last few years, the discovery of lysine and arginine methylation in histones and other proteins and the enzymes that carry out these posttranslational modifications has added a new dimension to the signal transduction field. In particular, there has been a huge surge in our understanding of how methylation of nucleosomal histones at specific lysine(More)
Rad6-mediated ubiquitylation of histone H2B at lysine 123 has been linked to transcriptional activation and the regulation of lysine methylation on histone H3. However, how Rad6 and H2B ubiquitylation contribute to the transcription and histone methylation processes is poorly understood. Here, we show that the Paf1 transcription elongation complex and the(More)