Learn More
In the last few years, the discovery of lysine and arginine methylation in histones and other proteins and the enzymes that carry out these posttranslational modifications has added a new dimension to the signal transduction field. In particular, there has been a huge surge in our understanding of how methylation of nucleosomal histones at specific lysine(More)
The yeast histone deacetylase Rpd3 can be recruited to promoters to repress transcription initiation. Biochemical, genetic, and gene-expression analyses show that Rpd3 exists in two distinct complexes. The smaller complex, Rpd3C(S), shares Sin3 and Ume1 with Rpd3C(L) but contains the unique subunits Rco1 and Eaf3. Rpd3C(S) mutants exhibit phenotypes(More)
Rad6-mediated ubiquitylation of histone H2B at lysine 123 has been linked to transcriptional activation and the regulation of lysine methylation on histone H3. However, how Rad6 and H2B ubiquitylation contribute to the transcription and histone methylation processes is poorly understood. Here, we show that the Paf1 transcription elongation complex and the(More)
The fundamental unit of eukaryotic chromatin, the nucleosome, consists of genomic DNA wrapped around the conserved histone proteins H3, H2B, H2A and H4, all of which are variously modified at their amino- and carboxy-terminal tails to influence the dynamics of chromatin structure and function -- for example, conjugation of histone H2B with ubiquitin(More)
Histone-lysine methylation is linked to transcriptional regulation and the control of epigenetic inheritance. Lysine residues can be mono-, di-, or trimethylated, and it has been suggested that each methylation state of a given lysine may impart a unique biological function. In yeast, histone H3 lysine 4 (K4) is mono-, di-, and trimethylated by the Set1(More)
DNA methylation is an epigenetic modification that has critical roles in gene silencing, development and genome integrity. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) and targeted by 24-nucleotide small interfering RNAs (siRNAs) through a pathway termed RNA-directed DNA methylation (RdDM). This pathway(More)
Posttranslational modifications of histone amino termini play an important role in modulating chromatin structure and function. Lysine methylation of histones has been well documented, and recently this modification has been linked to cellular processes involving gene transcription and heterochromatin assembly. However, the existence of arginine methylation(More)
NF-kappaB is a principal transcriptional regulator of diverse cytokine-mediated processes and is tightly controlled by the IkappaB kinase complex (IKK-alpha/beta/gamma). IKK-beta and IKK-gamma are critical for cytokine-induced NF-kappaB function, whereas IKK-alpha is thought to be involved in other regulatory pathways. However, recent data suggest a role(More)
Activation of gene transcription involves chromatin remodeling by coactivator proteins that are recruited by DNA-bound transcription factors. Local modification of chromatin structure at specific gene promoters by ATP-dependent processes and by posttranslational modifications of histone N-terminal tails provides access to RNA polymerase II and its(More)
Follicle-stimulating hormone (FSH), a major regulator of mammalian gonadal function, is induced by gonadotropin-releasing hormone (GnRH), but it is unclear how much induction is direct or indirect and what relevance each has in vivo. Two advances now make it possible to address these issues, which are central to understanding FSH regulation. The first is(More)