Brian D. Jensen

Learn More
—By integrating interferometric deflection data from electrostatically actuated microcantilevers with a numerical finite difference model, we have developed a step-by-step procedure to determine values of Young's modulus while simultaneously quantifying nonidealities. The central concept in the methodology is that nonidealities affect the long-range(More)
We present a non-fluidic pronuclear injection method using a silicon microchip “nanoinjector” composed of a microelectromechanical system with a solid, electrically conductive lance. Unlike microinjection which uses fluid delivery of DNA, nanoinjection electrically accumulates DNA on the lance, the DNA-coated lance is inserted into the pronucleus, and DNA(More)
Development of an effective cytoplasmic delivery technique has remained an elusive goal for decades despite the success of pronuclear microinjection. Cytoplasmic injections are faster and easier than pronuclear injection and do not require the pronuclei to be visible; yet previous attempts to develop cytoplasmic injection have met with limited success. In(More)
This paper presents the design optimization of a RF-MEMS direct contact cantilever switch for minimum actuation voltage and opening time, and maximum power handling capability. The design variables are the length and thickness of the entire cantilever, the widths of the sections of the cantilever, and the dimple size. The actuation voltage is obtained using(More)
This article introduced Trade-Off is taken as a new measure for MEMS switching to select the most probable frequency-voltage dependence for cantilevered beam RF MEMS switches. The switching voltage of the mentioned structures for MEMS switches is determined and analyzed at different geometrical parameters. The results investigate the geometrical parameters(More)
BACKGROUND Although site-directed genetic engineering has greatly improved in recent years, particularly with the implementation of CRISPR-Cas9, the ability to deliver these molecular constructs to a wide variety of cell types without adverse reaction is still a challenge. One non-viral transfection method designed to address this challenge is a MEMS based(More)
BACKGROUND CRISPR-Cas9 genome editing and labeling has emerged as an important tool in biologic research, particularly in regards to potential transgenic and gene therapy applications. Delivery of CRISPR-Cas9 plasmids to target cells is typically done by non-viral methods (chemical, physical, and/or electrical), which are limited by low transfection(More)
Doctor of Philosophy We have invented an in-plane all-photonic transduction method for photonic microcantilever arrays that is scalable to large arrays for sensing applications in both bio-and nanotechnology. Our photonic transduction method utilizes a microcantilever forming a single mode rib waveguide and a differential splitter consisting of an(More)
Knowledge and control of residual strain is critical for device design in MEMS, and therefore it is important to establish standards for residual strain measurement. In this study, pointer, microring, bent-beam, and fixed-fixed beam test structures are used to evaluate residual strain both theoretically and experimentally. An equation that enables easier(More)
  • 1