Learn More
LepA is a translational GTPase highly conserved in bacterial lineages. While it has been shown that LepA can catalyze reverse ribosomal translocation in vitro, the role of LepA in the cell remains unclear. Here, we show that deletion of the lepA gene (DeltalepA) in Escherichia coli causes hypersensitivity to potassium tellurite and penicillin G, but has no(More)
The bacterial tmRNA·SmpB system facilitates recycling of stalled translational complexes in a process termed "ribosome rescue." During ribosome rescue, the nascent chain is tagged with the tmRNA-encoded ssrA peptide, which targets the tagged polypeptide for degradation. Translational pausing also induces a variety of recoding events such as frameshifts,(More)
During protein synthesis, ribosomes translate the genetic information encoded within messenger RNAs into defined amino acid sequences. Transfer RNAs (tRNAs) are crucial adaptor molecules in this process, delivering amino acid residues to the ribosome and holding the nascent peptide chain as it is assembled. Here, we present methods for the analysis of(More)
Translational pausing can lead to cleavage of the A-site codon and facilitate recruitment of the transfer-messenger RNA (tmRNA) (SsrA) quality control system to distressed ribosomes. We asked whether aminoacyl-tRNA binding site (A-site) mRNA cleavage occurs during regulatory translational pausing using the Escherichia coli SecM-mediated ribosome arrest as a(More)
The bacterial tmRNA quality control system monitors protein synthesis and recycles stalled translation complexes in a process termed "ribosome rescue." During rescue, tmRNA acts first as a transfer RNA to bind stalled ribosomes, then as a messenger RNA to add the ssrA peptide tag to the C-terminus of the nascent polypeptide chain. The ssrA peptide targets(More)
Translation of mRNA lacking an in-frame stop codon leads to ribosome arrest at the 3' end of the transcript. In bacteria, the tmRNA quality control system recycles these stalled ribosomes and tags the incomplete nascent chains for degradation. Although ubiquitous in eubacteria, the ssrA gene encoding tmRNA is not essential for the viability of Escherichia(More)
The bacterial tmRNA.SmpB system recycles stalled translation complexes in a process termed 'ribosome rescue.' tmRNA.SmpB specifically recognizes ribosomes that are paused at or near the 3' end of truncated mRNA; therefore, nucleolytic mRNA processing is required before paused ribosomes can be rescued from full-length transcripts. Here, we examine the(More)
The enzyme flavin reductase 1 (FR1) from Trichomonas vaginalis, formerly known as NADPH oxidase, was isolated and identified. Flavin reductase is part of the antioxidative defence in T. vaginalis and indirectly reduces molecular oxygen to hydrogen peroxide via free flavins. Importantly, a reduced or absent flavin reductase activity has been reported in(More)
In Escherichia coli, prolonged translational arrest allows mRNA degradation into the A site of stalled ribosomes. The enzyme that cleaves the A-site codon is not known, but its activity requires RNase II to degrade mRNA downstream of the ribosome. This A-site mRNA cleavage process is thought to function in translation quality control because stalled(More)
Type II toxin-antitoxin (TA) modules are thought to mediate stress-responses by temporarily suppressing protein synthesis while cells redirect transcription to adapt to environmental change. Here, we show that YoeB, a ribosome-dependent mRNase toxin, is activated in Escherichia coli cells grown at elevated temperatures. YoeB activation is dependent on Lon(More)
  • 1