Brian C. Barringer

Learn More
Mating systems directly control the transmission of genes across generations, and understanding the diversity and distribution of mating systems is central to understanding the evolution of any group of organisms. This basic idea has been the motivation for many studies that have explored the relationships between plant mating systems and other biological(More)
Genome sizes vary widely among species, but comprehensive explanations for the emergence of this variation have not been validated. Lynch and Conery (2003) hypothesized that genome expansion is maladaptive, and that lineages with small effective population size (N(e)) evolve larger genomes than those with large N(e) as a consequence of the lowered efficacy(More)
Life-history traits interact in important ways. Relatively few studies, however, have explored the relationships between life-history traits in long-lived taxa such as trees. We examined patterns of energy allocation to components of reproduction and growth in three species of California oaks (Quercus spp.) using a combination of annual acorn censuses,(More)
phenology confirms pollen limitation in a wind-pollinated tree Walter D. Koenig*, Kyle A. Funk, Thomas S. Kraft, William J. Carmen, Brian C. Barringer and Johannes M. H. Knops Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; School of Biological(More)
Sterility is a commonly observed phenotype in interspecific hybrids. Sterility may result from chromosomal or genic incompatibilities, and much progress has been made toward understanding the genetic basis of hybrid sterility in various taxa. The underlying mechanisms causing hybrid sterility, however, are less well known. The pachytene checkpoint is a(More)
Many temperate taxa were confined to warmer latitudes during the last glacial maximum. As their ranges expanded when climates warmed, genetic drift and inbreeding in relatively small peripheral populations are expected to have reduced genetic diversity and the segregating genetic load. Therefore, inbreeding depression in peripheral populations might be(More)
Phenology is the timing of life cycle events of an organism. Alterations in phenology can have profound effects on individual fitness, population growth, and community dynamics. Recent changes in climate have altered the phenology of many organisms, which may result in selection to shift phenological traits. Understanding the relationship between local(More)
Inbreeding depression is the reduction in offspring fitness associated with inbreeding and is thought to be one of the primary forces selecting against the evolution of self-fertilization. Studies suggest that most inbreeding depression is caused by the expression of recessive deleterious alleles in homozygotes whose frequency increases as a result of(More)
  • 1