Learn More
Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now recognized that neurotransmitter-mediated signalling has a key(More)
Calcium signalling in astrocytes couples changes in neural activity to alterations in cerebral blood flow by eliciting vasoconstriction or vasodilation of arterioles. However, the mechanism for how these opposite astrocyte influences provide appropriate changes in vessel tone within an environment that has dynamic metabolic requirements remains unclear.(More)
Cerebral blood flow (CBF) is coupled to neuronal activity and is imaged in vivo to map brain activation. CBF is also modified by afferent projection fibres that release vasoactive neurotransmitters in the perivascular region, principally on the astrocyte endfeet that outline cerebral blood vessels. However, the role of astrocytes in the regulation of(More)
Neuronal excitotoxicity during stroke is caused by activation of unidentified large-conductance channels, leading to swelling and calcium dysregulation. We show that ischemic-like conditions [O(2)/glucose deprivation (OGD)] open hemichannels, or half gap junctions, in neurons. Hemichannel opening was indicated by a large linear current and flux across the(More)
Imaging analysis techniques were used to examine changes in the intrinsic optical properties in hippocampal brain slices that occurred during synaptic activity evoked by Schaffer collateral stimulation in CA1. Repetitive synaptic activity was associated with an increase in light transmission in the synaptic region in stratum radiatum. The effect was seen at(More)
P2X(7) receptor subunits form homomeric ATP-gated, calcium-permeable cation channels. In this study, we used Western blots and immunocytochemistry to demonstrate that P2X(7) receptors are abundant on presynaptic terminals of mossy fiber synapses in the rat hippocampus. P2X(7)-immunoreactive protein was detected using a specific P2X(7) antibody in Western(More)
Cholinergic stimulation of the hippocampal formation results in excitation and/or seizure. We report here, using whole-cell patch-clamp techniques in the hippocampal slice (34-35 degrees C), a cholinergic-dependent slow afterdepolarization (sADP) and long-lasting plateau potential (PP). In the presence of 20 microM carbachol, action potential firing evoked(More)
Intracellular recordings from pairs of neurons in slices of rat hippocampus directly demonstrated electronic coupling between CA3 pyramidal cells. When two neurons were impaled simultaneously (as verified by subsequent double staining with horseradish peroxidase), current pulses injected into one cell caused voltage changes in other cells. These(More)
The control of cerebral vessel diameter is of fundamental importance in maintaining healthy brain function because it is critical to match cerebral blood flow (CBF) to the metabolic demand of active neurons. Recent studies have shown that astrocytes are critical players in the regulation of cerebral blood vessel diameter and that there are several molecular(More)
Brain cell swelling is a consequence of seizure, ischemia or excitotoxicity. Changes in light reflectance from cortical surface are now used to monitor brain activity but these intrinsic signals are poorly understood. The objectives of this study were first, to show that changes in light transmittance were correlated with cell volume and second, to image(More)