Brian A Korgel

Learn More
Reversible electrochemical injection of discrete numbers of electrons into sterically stabilized silicon nanocrystals (NCs) (approximately 2 to 4 nanometers in diameter) was observed by differential pulse voltammetry (DPV) in N,N'-dimethylformamide and acetonitrile. The electrochemical gap between the onset of electron injection and hole injection-related(More)
Ligand-stabilized copper selenide (Cu(2-x)Se) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near-infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 10(7) cm(-1) M(-1) at 980(More)
Gold (Au) nanoshells were grown on silica nanoparticles with differing average diameters, ranging from 30 to 120 nm. Au nanoshells were also formed on silica spheres encapsulating 5 nm diameter magnetic iron oxide nanocrystals. The optical absorbance spectra of these Au nanoshells are reported. The plasmon resonance wavelengths of the smaller diameter(More)
Aptamers that bind to prostate specific membrane antigen (PSMA) were conjugated to luminescent CdSe and CdTe nanocrystals for cell-labeling studies. The aptamer-nanocrystal conjugates showed specific targeting of both fixed and live cells that overexpressed PSMA. More importantly, aptamers were able to label cells dispersed in a collagen gel matrix(More)
The separation method, flow field-flow fractionation (flow FFF), is coupled on-line with multiangle laser light scattering (MALLS) for simultaneous measurement of the size and concentration of vesicles eluting continuously from the fractionator. These size and concentration data, gathered as a function of elution time, may be used to construct both number-(More)
Chalcopyrite copper indium sulfide (CuInS2) and copper indium gallium selenide (Cu(InxGa(1-x))-Se2; CIGS) nanocrystals ranging from approximately 5 to approximately 25 nm in diameter were synthesized by arrested precipitation in solution. The In/Ga ratio in the CIGS nanocrystals could be controlled by varying the In/Ga reactant ratio in the reaction, and(More)
We report a general synthetic method for the formation of shape-controlled CdS, CdSe and CdTe nanocrystals and mixed-semiconductor heterostructures. The crystal growth kinetics can be manipulated by changing the injection rate of the chalcogen precursor, allowing the particle shape-spherical or rodlike-to be tuned without changing the underlying chemistry.(More)
Hybrids of hydrophobic sub-2-nm-diameter dodecanethiol-coated Au nanoparticles and phosphatidylcholine (PC) lipid vesicles made by extrusion were examined by cryogenic transmission electron microscopy (cryoTEM). The nanoparticles loaded the vesicles as a dense monolayer in the hydrophobic core of the lipid bilayer, without disrupting their structure.(More)
Surface oxidation and chemical passivation of single-crystal Ge nanowires with diameters ranging between 7 and 25 nm were studied. The surface chemistry differs significantly from that of well-studied monolithic atomically smooth single-crystal substrates. High-resolution Ge 3d XPS measurements reveal that Ge nanowires with chemically untreated surfaces(More)
We describe the single-step self-organization of nanocrystal superlattice films infused with spatially ordered arrays of micrometer-size pores. In a humid atmosphere, water droplets condense on the surface of evaporating thin-film solutions of nanocrystals. Nanocrystals coated with the appropriate ligands stabilize the water droplets, allowing them to grow(More)