Brett Vintch

Learn More
Many visual and auditory neurons have response properties that are well explained by pooling the rectified responses of a set of spatially shifted linear filters. These filters cannot be estimated using spike-triggered averaging (STA). Subspace methods such as spike-triggered covariance (STC) can recover multiple filters, but require substantial amounts of(More)
In contrast to humans and songbirds, there is limited evidence of vocal learning in nonhuman primates. While previous studies suggested that primate vocalizations exhibit developmental changes, detailed analyses of the extent and time course of such changes across a species' vocal repertoire remain limited. In a highly vocal primate, the common marmoset(More)
UNLABELLED The response properties of neurons in the early stages of the visual system can be described using the rectified responses of a set of self-similar, spatially shifted linear filters. In macaque primary visual cortex (V1), simple cell responses can be captured with a single filter, whereas complex cells combine a set of filters, creating position(More)
Human sensory perception is not a faithful reproduction of the sensory environment. For example, at low contrast, objects appear to move slower and flicker faster than veridical. Although these biases have been observed robustly, their neural underpinning is unknown, thus suggesting a possible disconnect of the well established link between motion(More)
  • 1