Brett L. Allen

Learn More
We have shown previously that single-walled carbon nanotubes can be catalytically biodegraded over several weeks by the plant-derived enzyme, horseradish peroxidase. However, whether peroxidase intermediates generated inside human cells or biofluids are involved in the biodegradation of carbon nanotubes has not been explored. Here, we show that hypochlorite(More)
We show here the biodegradation of single-walled carbon nanotubes through natural, enzymatic catalysis. By incubating nanotubes with a natural horseradish peroxidase (HRP) and low concentrations of H2O2 (approximately 40 microM) at 4 degrees C over 12 weeks under static conditions, we show the increased degradation of nanotube structure. This reaction was(More)
Advancement of biomedical applications of carbonaceous nanomaterials is hampered by their biopersistence and pro-inflammatory action in vivo. Here, we used myeloperoxidase knockout B6.129X1-MPO (MPO k/o) mice and showed that oxidation and clearance of single walled carbon nanotubes (SWCNT) from the lungs of these animals after pharyngeal aspiration was(More)
Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon--the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (∼40 μM), HRP catalyzed(More)
Because of their unique properties, carbon nanotubes and, in particular, multiwalled carbon nanotubes (MWNTs) have been used for the development of advanced composite and catalyst materials. Despite their growing commercial applications and increased production, the potential environmental and toxicological impacts of MWNTs are not fully understood;(More)
We have explored the room temperature response of metal nanoparticle decorated single-walled carbon nanotubes (NP-SWNTs) using a combination of electrical transport, optical spectroscopy, and electronic structure calculations. We have found that upon the electrochemical growth of Au NPs on SWNTs, there is a transfer of electron density from the SWNT to the(More)
Poly(propylene sulfide) nanoparticles (<150 nm) have been synthesized by an anionic, ring-opening emulsion polymerization. Upon exposure to parts per million (ppm) levels of oxidizing agent (NaOCl), hydrophobic polysulfide particles are oxidized to hydrophilic polysulfoxides and polysulfones. Utilizing this mechanism, the encapsulation of hydrophobic(More)
Crystal growth in native collagen gels has been used to determine the role of extracellular matrix macromolecules in biological calcification phenomena. In this system, type I collagen gels containing sodium phosphate and buffered at pH 7.4 are overlayed with a solution containing CaCl2. Crystals form in the collagen gel adjacent to the gel-solution(More)
Single-walled carbon nanotubes (SWNTs) have been investigated for a variety of applications including composite materials, electronics, and drug delivery. However, these applications may be compromised depending on the negative effects of SWNTs to living systems. While reports of toxicity induced by SWNTs vary, means to alleviate or quell these effects are(More)
The electrochemical activity of stacked nitrogen-doped carbon nanotube cups (NCNCs) has been explored in comparison to commercial Pt-decorated carbon nanotubes. The nanocup catalyst has demonstrated comparable performance to that of Pt catalyst in oxygen reduction reaction. In addition to effectively catalyzing O(2) reduction, the NCNC electrodes have been(More)