Brett A. Robbins

Learn More
In this paper, we propose an architecture for voltage regulation in distribution networks that relies on controlling reactive power injections provided by distributed energy resources (DERs). A local controller on each bus of the network monitors the bus voltage and, whenever there is a voltage violation, it uses locally available information to estimate(More)
This paper proposes a method to utilize distributed energy resources (DERs) to provide reactive power support for voltage control in electric power systems. Rather than controlling each of these resources directly, a distributed control algorithm is developed in which a leader node sends a request for reactive power to a few DERs that it can directly(More)
In this paper, we propose a method to optimally set the tap position of voltage regulation transformers in distribution systems. We cast the problem as a rank-constrained semidefinite program (SDP), in which the transformer tap ratios are captured by 1) introducing a secondary-side “virtual” bus per transformer, and 2) constraining the values(More)
In this paper, we propose a method to optimally set the reactive power contributions of distributed energy resources (DERs) present in distribution systems with the goal of regulating bus voltages. For the case when the network is balanced, we use the branch power flow modeling approach for radial power systems to formulate an optimal power flow (OPF)(More)
In this paper, we propose a method to optimally set the taps of voltage regulation transformers in distribution networks. Specifically, we cast the problem of optimally choosing the tap settings as a rank-constrained semidefinite program (SDP) with the transformer tap positions removed from the network's admittance matrix and replaced by additional(More)
We analyze the convergence properties of a parallel Newton scheme for differential systems. The scheme concurrently solves the time-coupled nonlinear systems arising from the application of implicit discretization schemes. We have found that the scheme acts as a tracking algorithm that converges to a moving manifold given by the solution of the nonlinear(More)
  • 1