Brennan S. Dirk

Learn More
The Human Immunodeficiency Virus type 1 (HIV-1) accessory protein Nef interacts with a multitude of cellular proteins, manipulating the host membrane trafficking machinery to evade immune surveillance. Nef interactions have been analyzed using various in vitro assays, co-immunoprecipitation studies, and more recently mass spectrometry. However, these(More)
Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating(More)
A defining characteristic of HIV-1 infection is the ability of the virus to persist within the host. Specifically, MHC-I downregulation by the HIV-1 accessory protein Nef is of critical importance in preventing infected cells from cytotoxic T-cell mediated killing. Nef downregulates MHC-I by modulating the host membrane trafficking machinery, resulting in(More)
Acquired Immune Deficiency Syndrome is characterized by a decline in CD4+ T cells. Here, we elucidated the mechanism underlying apoptosis in Human Immunodeficiency Virus-1 (HIV-1) infection by examining host apoptotic pathways hijacked by the HIV-1 Nef protein in the CD4+ T-cell line Sup-T1. Using a panel of Nef mutants unable to bind specific host proteins(More)
For studies on vaccines and therapies for HIV disease, SIV-HIV chimeric viruses harboring the HIV-1 env gene (SHIVenv) remain the best virus in non-human primate models. However, there are still very few SHIVenv viruses that can cause AIDS in non-CD8-depleted animals. In the present study, a recently created CCR5-using SHIVenv_B3 virus with env gene derived(More)
The oncoproteins of the small DNA tumor viruses interact with a plethora of cellular regulators to commandeer control of the infected cell. During infection, adenovirus E1A deregulates cAMP signalling and repurposes it for activation of viral gene expression. We show that E1A structurally and functionally mimics a cellular A-kinase anchoring protein (AKAP).(More)
Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1) is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular(More)
Extensive genetic diversity is a defining characteristic of human immunodeficiency virus type 1 (HIV-1) and poses a significant barrier to the development of an effective vaccine. To better understand the impact of this genetic diversity on the HIV-1 pathogenic factor Nef, we compiled a panel of reference strains from the NIH Los Alamos HIV Database.(More)
TYRO3, AXL, and MERTK (TAM) receptors are a family of receptor tyrosine kinases that maintain homeostasis through the clearance of apoptotic cells, and when defective, contribute to chronic inflammatory and autoimmune diseases such as atherosclerosis, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and Crohn's disease. In addition,(More)
  • 1