Learn More
Coalescent theory provides an elegant and powerful method for understanding the shape of gene genealogies and resulting patterns of genetic diversity. However, the coalescent does not naturally accommodate the effects of heritable variation in fitness. Although some methods are available for studying the effects of strong selection (Ns >> 1), few tools(More)
MOTIVATION Accurate determination of single-nucleotide polymorphisms (SNPs) from next-generation sequencing data is a significant challenge facing bioinformatics researchers. Most current methods use mechanistic models that assume nucleotides aligning to a given reference position are sampled from a binomial distribution. While such methods are sensitive,(More)
Since the advent of next-generation sequencing many previously untestable hypotheses have been realized. Next-generation sequencing has been used for a wide range of studies in diverse fields such as population and medical genetics, phylogenetics, microbiology, and others. However, this novel technology has created unanticipated challenges such as the large(More)
Reconstruction of population history from genetic data often requires Monte Carlo integration over the genealogy of the samples. Among tools that perform such computations, few are able to consider genetic histories including recombination events, precluding their use on most alignments of nuclear DNA. Explicit consideration of recombinations requires(More)
Identification of the genetic alterations responsible for human disease is a central challenge facing medical genetics. While many algorithms have been developed to predict the degree of damage caused by a given sequence alteration, few tools are able to incorporate information about a given phenotype of interest. Here, we describe an algorithm and(More)
  • 1