Brendan Costello

Learn More
We have recently described a preparation of junctional terminal cisternae (JTC) from fast skeletal muscle of rabbit hind leg. The fraction differs from other heavy sarcoplasmic reticulum (SR) fractions in that it contains a substantial amount of junctional face membrane (JFM) (15-20% of the membrane) with morphologically well-defined junctional feet(More)
Contraction of skeletal muscle is triggered by release of calcium from the sarcoplasmic reticulum. In this study, highly purified normal and dystrophic mouse sarcoplasmic reticulum vesicles were compared with respect to calcium release characteristics. Sarcoplasmic reticulum vesicles were actively loaded with calcium in the presence of an ATP-regenerating(More)
There is strong published and unpublished evidence that our CD105 Mab E9, which is highly reactive with angiogenic endothelial cells, could be a useful reagent to target the vasculature of solid tumors in man. Since Mab E9 does not cross-react with animal tissues, we undertook here to evaluate its localization using human kidney as an ex vivo model.(More)
Spontaneous calcium release from purified light sarcoplasmic reticulum has been previously described (Palade, P., Mitchell, R. D., and Fleischer, S. (1983) J. Biol. Chem. 258, 8098-8107) and found to be distinct from several other forms of Ca2+ release. Ca2+ release occurs after a lag period following active Ca2+ preloading and depletion of extravesicular(More)
Junctional terminal cisternae are a recently isolated sarcoplasmic reticulum fraction containing two types of membranes, the junctional face membrane with morphologically intact "feet" structures and the calcium pump membrane [Saito, A., Seiler, S., Chu, A., & Fleischer, S. (1984) J. Cell Biol. 99, 875-885]. In this study, the Ca2+ fluxes of junctional(More)
The effect of phenothiazines (trifluoperazine, chlorpromazine, methochlorpromazine, and imipramine) on Ca2+ fluxes in light and heavy sarcoplasmic reticulum (SR) isolated from rabbit fast-twitch skeletal muscle was investigated. These drugs inhibited Ca2+ loading and (Ca2+,Mg2+)-ATPase activity, but had no effect on unidirectional Ca2+ efflux from vesicles(More)
  • 1