Brendan B Chapman

Learn More
The contextual control of movement requires the transformation of sensory information into appropriate actions, guided by task-appropriate rules. Previous conceptualizations of the sensorimotor transformations underlying anti-saccades (look away from a stimulus) have suggested that stimulus location is first registered and subsequently transformed into its(More)
Visual stimulus presentation activates the oculomotor network without requiring a gaze shift. Here, we demonstrate that primate neck muscles are recruited during such reflexive covert orienting in a manner that parallels activity recorded from the superior colliculus (SC). Our results indicate the presence of a brainstem circuit whereby reflexive covert(More)
The supplementary eye fields (SEF) are thought to enable higher-level aspects of oculomotor control. The goal of the present experiment was to learn more about the SEF's role in orienting, specifically by examining neck muscle recruitment evoked by stimulation of the SEF. Neck muscle activity was recorded from multiple muscles in two monkeys during SEF(More)
Many forms of brain stimulation utilize the notion of state dependency, whereby greater influences are observed when a given area is more engaged at the time of stimulation. Here, by delivering intracortical microstimulation (ICMS) to the supplementary eye fields (SEF) of monkeys performing interleaved pro- and anti-saccades, we show a surprising diversity(More)
Visual stimulus presentation activates the oculomotor network without requiring a gaze shift. Here, we demonstrate that primate neck muscles are recruited during such reflexive covert orienting in a manner that parallels activity recorded from the superior colliculus (SC). Our results indicate the presence of a brainstem circuit whereby reflexive covert(More)
  • 1