Learn More
Cochlear outer hair cells (OHCs) are fast biological motors that serve to enhance the vibration of the organ of Corti and increase the sensitivity of the inner ear to sound. Exactly how OHCs produce useful mechanical power at auditory frequencies, given their intrinsic biophysical properties, has been a subject of considerable debate. To address this we(More)
We developed a method for measuring the efflux of 5-hydroxytryptamine (5-HT, serotonin) from isolated intact granules of the mast cell of the beige mouse. This method combines electroporation of the vesicle membrane with amperometric detection of 5-HT. A single secretory granule is placed between two platinum electrodes (distance approximately 100 microm)(More)
We measured the efflux of 5-hydroxytryptamine (5-HT, serotonin) from an intact secretory granule extracted from the mast cell of the beige mouse. The efflux was measured with amperometry after rupture of the granule membrane was triggered by electroporation. We determined the diffusivity of 5-HT within the secretory granule to be 2.0 x 10(-8) cm2 s(-1) when(More)
Membrane protein prestin is a critical component of the motor complex that generates forces and dimensional changes in cells in response to changes in the cell membrane potential. In its native cochlear outer hair cell, prestin is crucial to the amplification and frequency selectivity of the mammalian ear up to frequencies of tens of kHz. Other cells(More)
Prestin, a member of the SLC26A family of anion transporters, is a polytopic membrane protein found in outer hair cells (OHCs) of the mammalian cochlea. Prestin is an essential component of the membrane-based motor that enhances electromotility of OHCs and contributes to frequency sensitivity and selectivity in mammalian hearing. Mammalian cells expressing(More)
We determine membrane capacitance, C as a function of dc voltage for the human embryonic kidney (HEK) cell. C was calculated from the admittance, Y, obtained during a voltage ramp when the HEK cell was held in whole-cell patch-clamp configuration. Y was determined at frequencies of 390.625 and from the measured current, i obtained with a dual-sinusoidal(More)
Outer hair cells amplify and improve the frequency selectivity of sound within the mammalian cochlea through a sound-evoked receptor potential that induces an electromechanical response in their lateral wall membrane. We experimentally show that the membrane area and linear membrane capacitance of outer hair cells increases exponentially with the(More)
Our objective is to determine the time course of exocytotic fusion pore opening (P) in mast cells of the beige mouse from the measured efflux of the spike phase of exocytotic release (J). We show that a pore whose meridian or radius grows linearly with time cannot reproduce the efflux. We also show that a pore that opens very quickly [relative to the(More)
  • 1