Breigh Roszelle

Learn More
BACKGROUND Many cerebral aneurysms can be treated effectively with intracranial stents. Unfortunately, stents can occlude perforating vessels near the treatment site which can decrease cerebral perfusion and increase the risk of stroke. METHODS Particle image velocimetry was used to investigate the effects of intracranial stents on flows in perforators(More)
Flow diverting devices and stents can be used to treat cerebral aneurysms too difficult to treat with coiling or craniotomy and clipping. However, the hemodynamic effects of these devices have not been studied in depth. The objective of this study was to quantify and understand the fluid dynamic changes that occur within bifurcating aneurysms when treated(More)
In order to aid the ongoing concern of limited organ availability for pediatric heart transplants, Penn State has continued development of a pulsatile Pediatric Ventricular Assist Device (PVAD). Initial studies of the PVAD observed an increase in thrombus formation due to differences in flow field physics when compared to adult sized devices, which included(More)
Because of the shortage of organs for transplant in pediatric patients with end-stage heart failure, Penn State is developing a pneumatically driven 12 cc pulsatile pediatric ventricular assist device (PVAD). A major concern is the flow field changes related to the volume decrease and its effect on device thrombogenicity. Previous studies of similar devices(More)
The mortality rate for infants awaiting a heart transplant is 40% because of the extremely limited number of donor organs. Ventricular assist devices (VADs), a common bridge-to-transplant solution in adults, are becoming a viable option for pediatric patients. A major obstacle faced by VAD designers is thromboembolism. Previous studies have shown that the(More)
Although coil embolization is one of the most effective treatments for intracranial aneurysms (ICAs), the procedure is often unsuccessful. For example, an ICA may persist after coil embolization if deployed coils fail to block the flow of blood into the aneurysm. Unfortunately, the specific flow changes that are effected by embolic coiling (and other(More)
Whether treated surgically or with endovascular techniques, large and giant cerebral aneurysms are particularly difficult to treat. Nevertheless, high porosity stents can be used to accomplish stent-assisted coiling and even standalone stent-based treatments that have been shown to improve the occlusion of such aneurysms. Further, stent assisted coiling can(More)
Ventricular assist devices (VADs) have become a viable option for adult patients with end-stage heart failure during the bridge-to-transplant period and have recently shown promise in aiding in myocardial recovery. Because the number of available organs is insufficient, mechanical circulatory support systems such as VADs are also being developed for use in(More)
The success of adult ventricular assist devices (VADs), coupled with the high transplant waiting list mortality of infants (40%) has prompted Penn State to develop a pediatric version of the clinically successful adult device. Although the primary use of this device will be bridge-to-transplant, there has been sufficient clinical data to demonstrate the(More)
The aim of this study is to define the fluid mechanics of a pulsatile pneumatically driven pediatric ventricular assist device (PVAD), for the reduced flow rates encountered during device weaning and myocardial recovery, and relate the results to the potential for thromboembolic events. We place an acrylic model of the PVAD in a mock circulatory loop filled(More)
  • 1