Braveena K. Santhiranayagam

Learn More
Identifying different walking conditions is essential in order to monitor the activities of elderly population for active living or fast recovery of a patient following a surgery or even for prognosis and diagnosis of several conditions like Parkinson's disease. This paper looks at automatically detecting three different walking conditions (walking normally(More)
Foot clearance parameters provide useful insight into tripping risks during walking. This paper proposes a technique for the estimate of key foot clearance parameters using inertial sensor (accelerometers and gyroscopes) data. Fifteen features were extracted from raw inertial sensor measurements, and a regression model was used to estimate two key foot(More)
Inertial measurement units (IMU) comprising accelerometers and gyroscopes have recently found use in a wide range of motion analysis applications. Even though the technique of inferring secondary parameters such as velocity, displacement and angular rotation is greatly influenced by sensor noise, IMUs continue to find interest in movement studies due to(More)
This note presents an analysis of the octonionic form of the division algebraic support vector regressor (SVR) first introduced by Shilton A detailed derivation of the dual form is given, and three conditions under which it is analogous to the quaternionic case are exhibited. It is shown that, in the general case of an octonionic-valued feature map, the(More)
Falls are the primary cause of accidental injuries (52%) and one of the leading causes of death in individuals aged 65 and above. More than 50% of falls in healthy older adults are due to tripping while walking. Minimum toe clearance (i.e., minimum height of the toe above the ground during the mid-swing phase - MTC) has been investigated as an indicator of(More)
Advanced mathematical models are now widely used in medical applications for diagnosis, prognosis, and prevention of diseases. This work looks at the application of advanced regression models for estimating key foot parameters in falls prevention research. Falls is a serious issue for the rapidly increasing elderly demographic. We propose to investigate the(More)
Minimum-toe-clearance (MTC) above the walking surface is a critical representation of toe-trajectory control due to its association with tripping risk. Not all gait cycles exhibit a clearly defined MTC within the swing phase but there have been few previous accounts of the biomechanical characteristics of non-MTC gait cycles. The present report investigated(More)
Falls in older adults during walking frequently occur while performing a concurrent task; that is, dividing attention to respond to other demands in the environment. A particularly hazardous fall-related event is tripping due to toe-ground contact during the swing phase of the gait cycle. The aim of this experiment was to determine the effects of divided(More)
Identifying different activities during walking is a key requirement for ubiquitous gait monitoring, particularly when engineering new falls prevention solutions. In this study, 5 healthy young individuals (aged 26 ± 2 years old) completed 6 different tasks (a) walking with preferred walking speed (PWS), (b) walking with 10 % increment in the PWS,(More)