Learn More
Apoptotic cells release 'find-me' signals at the earliest stages of death to recruit phagocytes. The nucleotides ATP and UTP represent one class of find-me signals, but their mechanism of release is not known. Here, we identify the plasma membrane channel pannexin 1 (PANX1) as a mediator of find-me signal/nucleotide release from apoptotic cells.(More)
RATIONALE Macrophages change their phenotype and biological functions depending on the microenvironment. In atherosclerosis, oxidative tissue damage accompanies chronic inflammation; however, macrophage phenotypic changes in response to oxidatively modified molecules are not known. OBJECTIVE To examine macrophage phenotypic changes in response to oxidized(More)
Previous studies investigating the role of smooth muscle cells (SMCs) and macrophages in the pathogenesis of atherosclerosis have provided controversial results owing to the use of unreliable methods for clearly identifying each of these cell types. Here, using Myh11-CreER(T2) ROSA floxed STOP eYFP Apoe(-/-) mice to perform SMC lineage tracing, we find that(More)
Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function,(More)
S-nitrosylation is a post-translational modification on cysteine(s) that can regulate protein function, and pannexin 1 (Panx1) channels are present in the vasculature, a tissue rich in nitric oxide (NO) species. Therefore, we investigated whether Panx1 can be S-nitrosylated and whether this modification can affect channel activity. Using the biotin switch(More)
RATIONALE The mosquito-borne Zika virus (ZIKV) is now recognized as a blood-borne pathogen, raising an important question about how the virus gets into human bloodstream. The imminent threat of the ZIKV epidemic to the global blood supply also demands novel therapeutics to stop virus transmission though transfusion. OBJECTIVE We intend to characterize(More)
The pannexin family of channel-forming proteins is composed of 3 distinct but related members called Panx1, Panx2, and Panx3. Pannexins have been implicated in many physiological processes as well as pathological conditions, primarily through their function as ATP release channels. However, it is currently unclear if all pannexins are subject to similar or(More)
OBJECTIVE To determine whether S-nitrosylation of connexins (Cxs) modulates gap junction communication between endothelium and smooth muscle. METHODS AND RESULTS Heterocellular communication is essential for endothelium control of smooth muscle constriction; however, the exact mechanism governing this action remains unknown. Cxs and NO have been(More)
Within the vasculature, specialized cellular extensions from endothelium (and sometimes smooth muscle) protrude through the extracellular matrix where they interact with the opposing cell type. These structures, termed myoendothelial junctions, have been cited as a possible key element in the control of several vascular physiologies and pathologies. This(More)
Cellular interaction in blood vessels is maintained by multiple communication pathways, including gap junctions. They consist of intercellular channels ensuring direct interaction between endothelial and smooth muscle cells and the synchronization of their behavior along the vascular wall. Gap-junction channels arise from the docking of two hemichannels or(More)