Branislava D Dobutović

Learn More
Cardiovascular disease is the largest single cause of mortality and its major underlying pathology is atherosclerosis. The proliferation of vascular smooth muscle cells (VSMCs) is a key event in the pathogenesis of the various vascular diseases, including atherosclerosis and hypertension. Thrombin (Thr) is involved in the abnormal proliferation of VSMCs(More)
The purpose of this study was to examine the effects of ghrelin on protein kinase B (Akt) and mitogen-activated protein kinase p42/44 (ERK1/2) activation as well as ghrelin effects on inducible nitric oxide (NO) synthase (iNOS; for gene Nos2) activity/expression in rat hearts. Male Wistar rats were treated with ghrelin (0.3 nmol/5 μl) or an equal volume of(More)
Vascular endothelium, as a key regulator of hemostasis, mediates vascular dilatation, prevents platelet adhesion, and inhibits thrombin generation. Endothelial dysfunction caused by acute or chronic inflammation, such as in atherosclerosis, creates a proinflammatory environment which supports leukocyte transmigration toward inflammatory sites, and at the(More)
Vascular smooth muscle cells (VSMC) respond to arterial wall injury by intimal proliferation and play a key role in atherogenesis by proliferating and migrating excessively in response to repeated injury, such as hypertension and atherosclerosis. In contrast, fully differentiated, quiescent VSMC allow arterial vasodilatation and vasoconstriction.(More)
Vascular endothelium is a key regulator of homeostasis. In physiological conditions it mediates vascular dilatation, prevents platelet adhesion, and inhibits thrombin generation. However, endothelial dysfunction caused by physical injury of the vascular wall, for example during balloon angioplasty, acute or chronic inflammation, such as in atherothrombosis,(More)
This investigation used primary cultured rat vascular smooth muscle cells (VSMCs) to examine the effect of insulin (INS) on proliferation of VSMCs. In this study, we investigated the role of protein kinase B (Akt) and p42/44 mitogen-activated protein kinase (ERK 1/2) signaling pathways in mediating the mitogenic action of INS in VSMCs. Incubation of rat(More)
The nitric oxide (NO) cascade and endothelial NO synthase (eNOS) are best known for their role in endothelium-mediated relaxation of vascular smooth muscle (VSM). NO generated by eNOS has been established as a key regulatory signaling molecule in the vasculature. The activities of eNOS are controlled by intracellular calcium/calmodulin (CaM) and by binding(More)
Nitric oxide synthases (NOS) are the enzymes responsible for nitric oxide (NO) generation. NO is a reactive oxygen species as well as a reactive nitrogen species. It is a free radical which mediates several biological effects. It is clear that the generation and actions of NO under physiological and pathophysiological conditions are regulated and extend to(More)
Insulin (INS) via INS receptor acts as a mitogen in vascular smooth muscle cells (VSMCs) through stimulation of multiple signaling mechanisms, including p42/44 mitogen-activated protein kinase (ERK1/2) and phosphatidyl inositol-3 kinase (PI3K). In addition, cytosolic phospholipase 2 (cPLA2) is linked to VSMCs proliferation. However, the upstream mechanisms(More)
The peroxisome proliferator-activated receptors (PPARs) represent the family of 3 nuclear receptor isoforms-PPARα, -γ, and -δ/β, which are encoded by different genes. As lipid sensors, they are primarily involved in regulation of lipid metabolism and subsequently in inflammation and atherosclerosis. Atherosclerosis considers accumulation of the cells and(More)