#### Filter Results:

#### Publication Year

2008

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

We study how a mobile defender should patrol an area to protect multiple valuable targets from being attacked by an attacker. In contrast to existing approaches, which assume stationary targets, we allow the targets to move through the area according to an a priori known, deterministic movement schedules. We represent the patrol area by a graph of arbitrary… (More)

— We study the problem of a mobile agent trying to cross an area patrolled by a mobile adversary. The transiting agent aims to choose its route so as to minimize the probability of hostile encounter; the patroller agent, controlling one or more patrol units, aims at the opposite. We model the problem as a two-player zero-sum game (termed transit game) and… (More)

A number of real-world security scenarios can be cast as a problem of transiting an area patrolled by a mobile adversary , where the transiting agent aims to choose its route so as to minimize the probability of encountering the patrolling agent, and vice versa. We model this problem as a two-player zero-sum game on a graph, termed the transit game. In… (More)

We investigate an iterative algorithm for computing an exact Nash equilibrium in two-player zero-sum extensive-form games with imperfect information. The approach uses the sequence-form representation of extensive-form games and the double-oracle algo-rithmic framework. The main idea is to restrict the game by allowing the players to play only some of the… (More)

We study the problem of optimal resource allocation for packet selection and inspection to detect potential threats in large computer networks with multiple computers of differing importance. An attacker tries to harm these targets by sending malicious packets from multiple entry points of the network; the defender thus needs to optimally allocate her… (More)

Recent rise in maritime piracy prompts the search for novel techniques for addressing the problem. We therefore developed AgentC, a prototype system that demonstrates how agent-based traffic management techniques can be used to improve the security of transit through piracy-affected areas. Combining agent-based modeling and simulation of maritime traffic… (More)

Many search and security games played on a graph can be modeled as normal-form zero-sum games with strategies consisting of sequences of actions. The size of the strategy space provides a computational challenge when solving these games. This complexity is tackled either by using the compact representation of sequential strategies and linear programming ,… (More)

A number of real-world security scenarios can be cast as a problem of transiting an area guarded by a mobile patroller, where the transiting agent aims to choose its route so as to minimize the probability of encountering the patrolling agent, and vice versa. We model this problem as a two-player zero-sum game on a graph, termed the transit game. In… (More)

We focus on solving two-player zero-sum extensive-form games with perfect information and simultaneous moves. In these games, both players fully observe the current state of the game where they simultaneously make a move determining the next state of the game. We solve these games by a novel algorithm that relies on two components: (1) it iteratively solves… (More)

We study Monte Carlo tree search (MCTS) in zero-sum extensive-form games with perfect information and simultaneous moves. We present a general template of MCTS algorithms for these games, which can be instantiated by various selection methods. We formally prove that if a selection method is-Hannan consistent in a matrix game and satisfies additional… (More)