Brandon S. Razooky

Learn More
Analysis of noise in gene expression has proven a powerful approach for analyzing gene regulatory architecture. To probe the regulatory mechanisms controlling expression of HIV-1, we analyze noise in gene-expression from HIV-1's long terminal repeat (LTR) promoter at different HIV-1 integration sites across the human genome. Flow cytometry analysis of GFP(More)
Within individual cells, two molecular processes have been implicated as sources of noise in gene expression: (i) Poisson fluctuations in mRNA abundance arising from random birth and death of individual mRNA transcripts or (ii) promoter fluctuations arising from stochastic promoter transitions between different transcriptional states. Steady-state(More)
Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different(More)
Episodic gene expression, with periods of high expression separated by periods of no expression, is a pervasive biological phenomenon. This bursty pattern of expression draws from a finite reservoir of expression machinery in a highly time variant way, i.e., requiring no resources most of the time but drawing heavily on them during short intense bursts,(More)
Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-to-cell expression variability (noise) and mean are uncorrelated, a significant deviation from(More)
  • 1