Brandon H. McNaughton

Learn More
In this work, sensing magnetic microparticles were used to probe both the local pH and the viscosity-dependent nonlinear rotational behavior of the particles. The latter resulted from a critical transition marking a driven particle's crossover from phase-locking to phase-slipping with an externally rotating magnetic field, i.e., a sudden breakdown in its(More)
Continuous growth of individual bacteria has been previously studied by direct observation using optical imaging. However, optical microscopy studies are inherently diffraction limited and limited in the number of individual cells that can be continuously monitored. Here we report on the use of the asynchronous magnetic bead rotation (AMBR) sensor, which is(More)
Bacterial antibiotic resistance is one of the major concerns of modern healthcare worldwide, and the development of rapid, growth-based, antimicrobial susceptibility tests is key for addressing it. The cover image shows a self-assembled asynchronous magnetic bead rotation (AMBR) biosensor developed for rapid detection of bacterial growth. Using the(More)
The long turnaround time in antimicrobial susceptibility testing (AST) endangers patients and encourages the administration of wide spectrum antibiotics, thus resulting in alarming increases of multidrug resistant pathogens. A method for faster detection of bacterial proliferation presents one avenue toward addressing this global concern. We report on a(More)
Biosensors with increasingly high sensitivity are crucial for probing small scale properties. The asynchronous magnetic bead rotation (AMBR) sensor is an emerging sensor platform, based on magnetically actuated rotation. Here the frequency dependence of the AMBR sensor's sensitivity is investigated. An asynchronous rotation frequency of 145 Hz is achieved.(More)
Inappropriate antibiotic use is a major factor contributing to the emergence and spread of antimicrobial resistance. The long turnaround time (over 24 hours) required for clinical antimicrobial susceptibility testing (AST) often results in patients being prescribed empiric therapies, which may be inadequate, inappropriate, or overly broad-spectrum. A(More)
Metal-capping of one hemisphere of a nano or microparticle breaks the particle’s optical symmetry, allowing its orientation to be tracked using fluorescence and reflection. Tracking orientation and rotation allows the torques acting on the particles be inferred. In addition to serving as rotational nanoviscometers these probes report on local Brownian,(More)
We present here an experimental, strictly one-dimensional rotational system, made by using single magnetic Janus particles in a static magnetic field. These particles were half-coated with a thin metallic film, and by turning on a properly oriented external static magnetic field, we monitor the rotational brownian motion of single particles, in solution,(More)
Single cell analysis has allowed critical discoveries in drug testing, immunobiology and stem cell research. In addition, a change from two to three dimensional growth conditions radically affects cell behavior. This already resulted in new observations on gene expression and communication networks and in better predictions of cell responses to their(More)
This paper presents a novel application of magnetic particles for biosensing, called label-acquired magnetorotation (LAM). This method is based on a combination of the traditional sandwich assay format with the asynchronous magnetic bead rotation (AMBR) method. In label-acquired magnetorotation, an analyte facilitates the binding of a magnetic label bead to(More)