Learn More
The reduction of nitric oxide (NO) in aqueous solutions of Fe(II)EDTA is one of the core processes in BioDeNOx, an integrated physicochemical and biological technique for NO(x)() removal from industrial flue gases. NO reduction in aqueous solutions of Fe(II)EDTA (20-25 mM, pH 7.2 +/- 0.2) was investigated in batch experiments at 55 degrees C. Reduction of(More)
Kinetic parameters describing growth and decay of mesophilic (30°C) and thermophilic (55°C) aerobic biomass were determined in continuous and batch experiments by using oxygen uptake rate measurements. Biomass was cultivated on a single soluble substrate (acetate) in a mineral medium. The intrinsic maximum growth rate (μ max) at 55°C was 0.71±0.09 h−1,(More)
Wastewater contains various organic components with different physical and biochemical characteristics. ASM No. 1 distinguishes two categories of biodegradable organic matter in wastewater, rapidly and slowly biodegradable. In general there are two methods for wastewater characterization: based on filtration in combination with a long-term BOD test or based(More)
An integrated physicochemical and biological technique for NO(x) removal from flue gas, the so-called BioDeNO(x) process, combines the principles of wet absorption of NO in an aqueous Fe(II)EDTA(2-) solution with biological reduction of the sorbed NO in a bioreactor. The biological reduction of NO to di-nitrogen gas (N(2)) takes place under thermophilic(More)
Reduction of EDTA-chelated Fe(III) is one of the core processes in the BioDeNOx process, a chemically enhanced technique for biological NOx removal from industrial flue gases. The capacity of Escherichia coli, three mixed cultures from full scale methanogenic granular sludge reactors, one denitrifying sludge, and a BioDeNOx sludge to reduce Fe(III)EDTA- (25(More)
BioDeNOx is a novel technique for NOx removal from industrial flue gases. In principle, BioDeNOx is based on NO absorption into an aqueous Fe(II)EDTA2- solution combined with biological regeneration of that scrubber liquor in a bioreactor. The technical and economical feasibility of the BioDeNOx concept is strongly determined by high rate biological(More)
Biological reduction of nitric oxide (NO) to di-nitrogen (N(2)) gas in aqueous Fe(II)EDTA(2-) solutions is a key reaction in BioDeNOx, a novel process for NOx removal from flue gases. The mechanism and kinetics of the first step of NO reduction, that is, the conversion of NO to N(2)O, was determined in batch experiments using various types of inocula.(More)
The performance of a rotating biological contactor (RBC) for the post-treatment of the effluent of an up-flow anaerobic sludge blanket (UASB) was the subject of this study. Different hydraulic and organic loading rates have been investigated. The removal efficiencies of COD(total), COD(suspended), COD(colloidal) and COD(soluble) increased at a higher(More)
Monitoring data were collected in a pilot-scale municipal activated sludge plant to assess the fate of the C12-homologue of linear alkyl benzene sulfonate (LAS-C12). The pilot-plant was operated at influent LAS-C12 concentrations between 2 and 12 mg l(-1) and at sludge retention times of 10 and 27 days. Effluent and waste sludge concentrations varied(More)
A small-scale pilot plant consisting of a three-stage RBC has been investigated for the removal of E. coli, COD fractions and ammonia from the effluent of an UASB reactor treating domestic wastewater. The results obtained reveal that a three-stage system operated at a HRT of 3.0 h represents an effective posttreatment process. The remaining COD in the final(More)