Bradly J Seufzer

Learn More
Activation of the transcription factor NF-kappaB by extracellular signals involves its release from the inhibitor protein IkappaBalpha in the cytoplasm and subsequent nuclear translocation. NF-kappaB can also be activated by the anticancer agent camptothecin (CPT), which inhibits DNA topoisomerase (Topo) I activity and causes DNA double-strand breaks during(More)
Two highly passaged laboratory strains of human cytomegalovirus (HCMV), AD169 and Towne, were tested for their ability to infect and replicate in THP-1 myelomonocytic cells differentiated with 12-O-tetradecanoylphorbol-13-acetate (TPA). TPA treatment of human THP-1 cells increased the number of cells that expressed HCMV immediate early (IE1) antigen from(More)
The Rel/NF-kappaB family of transcription factors is sequestered in the cytoplasm of most mammalian cells by inhibitor proteins belonging to the IkappaB family. Degradation of IkappaB by a phosphorylation-dependent ubiquitin-proteasome (inducible) pathway is believed to allow nuclear transport of active Rel/NF-kappaB dimers. Rel/NF-kappaB (a p50-c-Rel(More)
The inactive transcription factor NF-kappaB is localized in the cytoplasm and rapidly responds to a variety of extracellular factors and intracellular stress conditions to initiate multiple cellular responses. While the knowledge regarding NF-kappaB signaling pathways initiated by extracellular ligands is rapidly expanding, the mechanisms of activation by(More)
We tested the effect of copackaging retroviral vectors of different sizes on retroviral replication and recombination. Our results indicate little or no difference in replication or in the rate or pattern of the strand transfers leading to the formation of recombinant proviruses with size. The size difference of the vectors also allowed us to extend our(More)
Inducible activation of cytoplasmic NF-kappa B/Rel transcription factors occurs via proteasome-dependent degradation of an associated inhibitor, termed I kappa B alpha. Mature B lymphocytes constitutively express nuclear NF-kappa B, which is important for their long-term survival. The intrinsic mechanisms by which B cells constitutively activate NF-kappa B(More)
Tropical pulmonary eosinophilia is in part caused by the hyperimmune responsiveness of the lung tissue against the antigens of degenerating microfilariae. We have previously shown that the activation of the transcription factor NF-kappaB is essential for the synthesis and release of multiple pro-inflammatory cytokines in HEp-2 human airway epithelial cells(More)
The paradigm protein synthesis rate is regulated by structural complexity of the 5'untranslated region (UTR) derives from bacterial and other riboswitches. In-solution, HIV-1 5'UTR forms two interchangeable long-range nucleotide (nt) -pairings, one sequesters the gag start codon promoting dimerization while the other sequesters the dimer initiation signal(More)
  • 1