Learn More
A superspecial curve in characteristic p is a curve whose Jacobian is a product of supersingular elliptic curves. Using Igusa's result that h p (λ) has only simple roots, one can calculate how many supersingular elliptic curves have each possible automorphism group. Relying on Igusa's enumeration of all automorphism groups of genus 2 curves and Hashimoto(More)
De Launey has conjectured and proved that for every prime p there exists a circulant generalized Hadamard matrix of order p 2 over the group Z p. We offer a new construction, generalize it, and prove that it is not isomorphic to the previous one for p ≥ 5. First let us recall some definitions and results from [3]. Let H and G be finite multiplicative groups(More)
  • 1