Learn More
Efficient function at the neuromuscular junction requires high-density aggregates of acetylcholine receptors (AChRs) to be precisely aligned with the motor nerve terminal. A collaborative effort between the motor neuron and muscle intrinsic factors drives the formation and maintenance of these AChR aggregates. alpha-Dystrobrevin (alpha DB), a cytoplasmic(More)
In skeletal muscle, alpha-dystrobrevin (alphaDB) is expressed throughout the sarcolemma with high concentrations at the neuromuscular junction. Mice lacking alphaDB display a mild muscular dystrophy and perturbations at the neuromuscular junction that include disruptions to acetylcholine receptor (AChR) cluster stability and patterning. In adult skeletal(More)
Adult skeletal muscle adapts to functional needs, maintaining consistent numbers of myonuclei and stem cells. Although resident muscle stem cells or satellite cells are required for muscle growth and repair, in uninjured muscle, these cells appear quiescent and metabolically inactive. To investigate the satellite cell contribution to myofibers in adult(More)
Mutations in collagen, type IV, alpha 1 (COL4A1), a major component of basement membranes, cause multisystem disorders in humans and mice. In the eye, these include anterior segment dysgenesis, optic nerve hypoplasia and retinal vascular tortuosity. Here we investigate the retinal pathology in mice carrying dominant-negative Col4a1 mutations. To this end,(More)
  • 1