Learn More
To examine how genetic variation in a plant population affects arthropod community richness and composition, we quantified the arthropod communities on a synthetic population of Eucalyptus amygdalina, E. risdonii, and their F1 and advanced-generation hybrids. Five major patterns emerged. First, the pure species and hybrid populations supported significantly(More)
We found the hybrid zone between Eucalyptus amygdalina and Eucalyptus risdonii to be a center of insect and fungal species richness and abundance. Of 40 taxa examined, 73% were significantly more abundant in the hybrid zone than in pure zones, 25% showed on significant differences, and 2% were most abundant on a pure host species. The average hybrid tree(More)
Eucalyptus globulus (Myrtaceae) is a forest tree native to southeastern Australia, but is grown globally for pulpwood and timber. Eight microsatellite loci were used to determine the degree of selectively neutral differentiation between native populations of the geographic races of E. globulus that are used in a national breeding programme. Spatial(More)
The evolution of plant defensive traits in response to selection pressures imposed by herbivores is central to co-evolutionary theory. To demonstrate the role of herbivores as selective agents on plant resistance there must be variability in plant resistance to herbivores within a plant population. This variability must be under genetic control, and the(More)
Knowledge of the manner in which genetic variation within a tree species affects associated communities and ecosystem processes across its entire range is important for understanding how geographic mosaics of genetic interactions might develop and support different communities. While numerous studies have investigated the community and ecosystem(More)
An example from the genus Eucalyptus is used to argue that hybridization may be of evolutionary significance as a means of gene dispersal where seed dispersal is limited. A previous study of regeneration of E. risdonii and E. amygdalina indicated that the current selective regime was favoring E. risaonii. However, the dispersal of E. risdonii by seeds is(More)
The developing field of community genetics has the potential to broaden the contribution of genetics to conservation biology by demonstrating that genetic variation within foundation plant species can act to structure associated communities of microorganisms, invertebrates, and vertebrates. We assessed the biodiversity consequences of natural patterns of(More)
Eucalyptus regnans is a mass flowering, tall forest tree of southeastern Australia with a mixed mating system. A field trial containing randomized single tree plots of self, outcross, and naturally open-pollinated (OP) progenies of 13 parents from two natural populations was surveyed over 15 yr. Inbreeding depression in survival at 15 years was 67% for(More)
Intra-specific hybrids within Eucalyptus nitens and E. globulus were compared directly with inter-specific E. nitens × globulus using common parents. Diameter (age 2, 4, 6, 10 years) and Pilodyn (age 6 years) were used as indirect measures of growth and wood density, respectively. Genetic parameters were estimated for all cross types and traits. A direct(More)
The genetic structure of Eucalyptus globulus forest was examined using progeny vigor as an indirect measure of parental relatedness. Seven trees were crossed with pollen from trees: 0 m (seifing); 21 m (nearest flowering neighbors), 250 m, 500 m, 1 km, 10 km, and 100 km away from the female. Only selfing depressed seed set. Growth of the 21 m progenies was(More)