Bradley J Voss

Learn More
UNLABELLED Bacterial type IV secretion systems (T4SSs) can function to export or import DNA, and can deliver effector proteins into a wide range of target cells. Relatively little is known about the structural organization of T4SSs that secrete effector proteins. In this report, we describe the isolation and analysis of a membrane-spanning core complex from(More)
The prevalence of drug-resistant strains of Mycobacterium tuberculosis (M. tb) emphasizes the need for new antitubercular drugs. An essential component of the drug discovery process is the development of tools to rapidly screen potential drug libraries against important biological targets. Similarly to well-documented M. tb targets, the antigen 85 (Ag85)(More)
More than 50 Helicobacter pylori genes are predicted to encode outer membrane proteins (OMPs), but there has been relatively little experimental investigation of the H. pylori cell surface proteome. In this study, we used selective biotinylation to label proteins localized to the surface of H. pylori, along with differential detergent extraction procedures(More)
Helicobacter pylori causes numerous alterations in gastric epithelial cells through processes that are dependent on activity of the cag type IV secretion system (T4SS). Filamentous structures termed "pili" have been visualized at the interface between H. pylori and gastric epithelial cells, and previous studies suggested that pilus formation is dependent on(More)
PURPOSE Helicobacter pylori infection and a high dietary salt intake are each risk factors for the development of gastric cancer. We hypothesize that changes in environmental salt concentrations lead to alterations in the H. pylori membrane proteome. EXPERIMENTAL DESIGN Label-free and iTRAQ methods were used to identify H. pylori proteins that change in(More)
Helicobacter pylori colonizes the human stomach and is associated with an increased risk of gastric cancer and peptic ulcer disease. Analysis of H. pylori protein secretion is complicated by the occurrence of bacterial autolysis. In this study, we analyzed the exoproteome of H. pylori at multiple phases of bacterial growth and identified 74 proteins that(More)
The goal of this research was to analyze the composition of the Helicobacter pylori exoproteome at multiple phases of bacterial growth (Snider et al., 2015) [1]. H. pylori was grown in a serum-free medium and at serial time points, aliquots were centrifuged and fractionated to yield culture supernatant, a soluble cellular fraction, and a membrane fraction.(More)
Interactions between pathogenic bacteria and host cells are often mediated by proteins found on the surfaces of the bacteria. The Gram-negative bacterium Helicobacter pylori is predicted to produce at least 50 surface-exposed outer membrane proteins, but there has been relatively little progress in experimentally analyzing the cell-surface proteome of this(More)
  • 1