Learn More
Three first-generation fluorescent protein voltage sensitive probes (FP-voltage sensors) were characterized in mammalian cells. Flare, a Kv1.4 variant of FlaSh [Siegel MS, Isacoff EY. Neuron 1997;19(October (4)):735-41], SPARC [Ataka K, Pieribone VA. Biophys J 2002;82(January (1 Pt 1)):509-16], and VSFP-1 [Sakai R, Repunte-Canonigo V, Raj CD, Knopfel T. Eur(More)
Plant breeders have used disease resistance genes (R genes) to control plant disease since the turn of the century. Molecular cloning of R genes that enable plants to resist a diverse range of pathogens has revealed that the proteins encoded by these genes have several features in common. These findings suggest that plants may have evolved common signal(More)
This paper presents three examples of imaging brain activity with voltage- or calcium-sensitive dyes and then discusses the methodological aspects of the measurements that are needed to achieve an optimal signal-to-noise ratio. Internally injected voltage-sensitive dye can be used to monitor membrane potential in the dendrites of invertebrate and vertebrate(More)
BACKGROUND Fluorescent proteins have been used to generate a variety of biosensors to optically monitor biological phenomena in living cells. Among this class of genetically encoded biosensors, reporters for membrane potential have been a particular challenge. The use of presently known voltage sensor proteins is limited by incorrect subcellular(More)
Imaging activity of neurons in intact brain tissue was conceived several decades ago and, after many years of development, voltage-sensitive dyes now offer the highest spatial and temporal resolution for imaging neuronal functions in the living brain. Further progress in this field is expected from the emergent development of genetically encoded fluorescent(More)
This review presents three examples of using voltage- or calcium-sensitive dyes to image the activity of the brain. Our aim is to discuss the advantages and disadvantages of each method with particular reference to its application to the study of the brainstem. Two of the examples use wide-field (one-photon) imaging; the third uses two-photon scanning(More)
Mildly food-deprived rats were presented at the same time either high- and low-carbohydrate diets or protein-containing and nonnutritive diets differing in flavor in parallel with nutrient composition. After a few days of these concurrent 10-minute presentations, the rats preferred the flavor of the richer or nutritive diet. Such preference conditioning(More)
Effects of protein on mild food deprivation in the rat conditioned a relative preference for an intense, insoluble and tasteless odorant. This learned preference for the protein-paired odorant over a non-nutritive-paired odorant was temporarily obliterated by insertion of tubes in the nares to bypass the olfactory mucosa. This demonstrates truly olfactory(More)
ArcLight is a genetically encoded fluorescent voltage sensor using the voltage-sensing domain of the voltage-sensing phosphatase from Ciona intestinalis that gives a large but slow-responding optical signal in response to changes in membrane potential (Jin et al., 2012). Fluorescent voltage sensors using the voltage-sensing domain from other species give(More)