Learn More
Protein homeostasis (proteostasis) is essential for cellular and organismal health. Stress, aging and the chronic expression of misfolded proteins, however, challenge the proteostasis machinery and the vitality of the cell. Enhanced expression of molecular chaperones, regulated by heat shock transcription factor-1 (HSF-1), has been shown to restore(More)
HIV-1 protease has been identified as a significant target enzyme in AIDS research. While numerous peptide-derived inhibitors have been described, the identification of a nonpeptide inhibitor remains an important goal. Using an HIV-1 protease mass screening technique, 4-hydroxy-3-(3-phenoxypropyl)-2H-1-benzopyran-2-one (1) was identified as a nonpeptide(More)
Due largely to the emergence of multi-drug-resistant HIV strains, the development of new HIV protease inhibitors remains a high priority for the pharmaceutical industry. Toward this end, we previously identified a 4-hydroxy-5,6-dihydropyrone lead compound (CI-1029, 1) which possesses excellent activity against the protease enzyme, good antiviral efficacy in(More)
On the basis of previous SAR findings and molecular modeling studies, a series of compounds were synthesized which possessed various sulfonyl moieties substituted at the 4-position of the C-3 phenyl ring substituent of the dihydropyran-2-one ring system. The sulfonyl substituents were added in an attempt to fill the additional S(3)' pocket and thereby(More)
With the insight generated by the availability of X-ray crystal structures of various 5,6-dihydropyran-2-ones bound to HIV PR, inhibitors possessing various alkyl groups at the 6-position of 5,6-dihydropyran-2-one ring were synthesized. The inhibitors possessing a 6-alkyl group exhibited superior antiviral activities when compared to 6-phenyl analogues.(More)
A novel series of nonpeptidic compounds that contain a biphenyl carboxylic acid group have been shown to inhibit HIV-1 protease. The active compounds, most of which are highly soluble, have IC50 values in the range of 3.4-74 microM. The structure-inhibitory activity relationship demonstrates the necessity of the biphenyl carboxylic acid group for(More)
The 4-hydroxy-5,6-dihydropyrone template was utilized as a flexible scaffolding from which to build potent active site inhibitors of HIV protease. Dihydropyrone 1c (5,6-dihydro-4-hydroxy-6-phenyl-3-[(2-phenylethyl)thio]-2H-pyran-2-one) was modeled in the active site of HIV protease utilizing a similar binding mode found for the previously reported(More)
4-Sulfamoyl pyrroles were designed as novel hepatoselective HMG-CoA reductase inhibitors (statins) to reduce myalgia, a statin-induced adverse effect. The compounds were prepared via a [3+2] cycloaddition of a Münchnone with a sulfonamide-substituted alkyne. We identified compounds with greater selectivity for hepatocytes compared to L6-myocytes than(More)
The design of drugs with selective tissue distribution can be an effective strategy for enhancing efficacy and safety, but understanding the translation of preclinical tissue distribution data to the clinic remains an important challenge. As part of a discovery program to identify next generation liver selective HMG-CoA reductase inhibitors we report the(More)