Bradley Cowie

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
Reaction of [PtCl(2)(COD)] and [PtI(2)(COD)] with 2,7-di-tert-butyl-5-diphenylboryl-4-diphenylphosphino-9,9-dimethylthioxanthene (TXPB) afforded square planar [PtCl(2)(TXPB)] (1B) and [PtI(2)(TXPB)] (4B), both of which were crystallographically characterized. Single-crystal X-ray quality crystals were also obtained for [PdCl(2)(TXPB)] (2B; Emslie et al.,(More)
The eld of Information Security and the sub eld of cryptographic protocols are both vast and continually evolving and expanding elds. The use of cryptographic protocols as a means to provide security to web servers and services at the transport layer, by providing both encryption and authentication to data transfer, has become increasingly popular. I intend(More)
A bis(phosphine)borane ambiphilic ligand, [Fe(η(5) -C5 H4 PPh2 )(η(5) -C5 H4 PtBu{C6 H4 (BPh2 )-ortho})] (FcPPB), in which the borane occupies a terminal position, was prepared. Reaction of FcPPB with tris(norbornene)platinum(0) provided [Pt(FcPPB)] (1) in which the arylborane is η(3) BCC-coordinated. Subsequent reaction with CO and CNXyl(More)
The reduction of UVI uranyl halides or amides with simple LnII or UIII salts forms highly symmetric, linear, oxo-bridged trinuclear UV /LnIII /UV , LnIII /UIV /LnIII , and UIV /UIV /UIV complexes or linear LnIII /UV polymers depending on the stoichiometry and solvent. The reactions can be tuned to give the products of one- or two-electron uranyl reduction.(More)
This paper describes research in the eld of cryptographic protocols, currently being performed in the REMOVED. While this research is not entirely novel, as it makes use of elements from existing research in the detection of encrypted applications [2], we consider a generic solution to the given problem of analysing encrypted tra c with the intention of(More)
Cyclic boron-containing π-ligands such as boratabenzenes and borollides are well established, in particular as supporting ligands. By contrast, the chemistry of acyclic boron-containing π-ligands has remained relatively unexplored, presumably in part due to the higher reactivity of acyclic π-ligands relative to cyclic analogues. This perspective is focused(More)
An aryldimethylalane-appended analogue of 1,1'-bis(diphenylphosphino)ferrocene, FcPPAl, was prepared, and reaction with [Pt(nb)3 ] (nb=norbornene) afforded [Pt(η(2) -nb)(FcPPAl)] (1). Heating a solution of 1 to 80 °C resulted in crystallization of [{Pt(FcPPAl)}2 ] (2), whereas treatment of 1 with C2 H4 , C2 Ph2 , H2 , or CO provided [PtL(FcPPAl)] [L=C2 H4(More)
Reaction of the neutral ambiphilic ligand 2,7-di-tert-butyl-5-diphenylboryl-4-diphenylphosphino-9,9-dimethylthioxanthene (TXPB) with [{Rh(mu-Cl)(CO)(2)}(2)] yields [RhCl(CO)(TXPB)] (1) (Emslie et al. Organometallics 2006, 25, 5835). Complex 1 is square planar with the TXPB ligand bound to rhodium via the phosphine and thioether donors (these are features(More)
This paper considers the complexities involved in obtaining training data for use by artificial intelligence constructs to identify potential network incidents using passive network telescope data. While a large amount of data obtained from network telescopes exists, this data is not currently marked for known incidents. Problems related to this marking(More)
  • 1