Learn More
BACKGROUND One problem of interpreting population-based biomonitoring data is the reconstruction of corresponding external exposure in cases where no such data are available. OBJECTIVES We demonstrate the use of a computational framework that integrates physiologically based pharmacokinetic (PBPK) modeling, Bayesian inference, and Markov chain Monte Carlo(More)
The complexity and the astronomic number of possible chemical mixtures preclude any systematic experimental assessment of toxicology of all potentially troublesome chemical mixtures. Thus, the use of computer modeling and mechanistic toxicology for the development of a predictive tool is a promising approach to deal with chemical mixtures. In the past 15(More)
Acetaminophen (APAP, paracetamol) is currently the principal cause of acute liver failure in both the USA and the UK. However, relatively little is known about the influence of genes and race/ethnicity on the disposition of APAP and the extent to which genetic variation and ethnicity may predispose individuals to a higher risk of APAP-induced(More)
The principal aim of this study was to develop, validate, and demonstrate a physiologically based pharmacokinetic (PBPK) model to predict and characterize the absorption, distribution, metabolism, and excretion of acetaminophen (APAP) in humans. A PBPK model was created that included pharmacologically and toxicologically relevant tissue compartments and(More)
  • Yuwadee Ngamwong, Wimonchat Tangamornsuksan, Ornrat Lohitnavy, Nathorn Chaiyakunapruk, C. Norman Scholfield, Brad Reisfeld +2 others
  • 2015
Smoking and asbestos exposure are important risks for lung cancer. Several epidemiological studies have linked asbestos exposure and smoking to lung cancer. To reconcile and unify these results, we conducted a systematic review and meta-analysis to provide a quantitative estimate of the increased risk of lung cancer associated with asbestos exposure and(More)
UNLABELLED Assessing and improving the safety of chemicals and the efficacy of drugs depends on an understanding of the biodistribution, clearance and biological effects of the chemical(s) of interest. A promising methodology for the prediction of these phenomena is physiologically based pharmacokinetic/pharmacodynamic modeling, which centers on the(More)
Cytochrome P450 (CYP) enzymes play a critical role in detoxication and bioactivation of xenobiotics; thus, the ability to predict the biotransformation rates and regioselectivity of CYP enzymes toward substrates is an important goal in toxicology and pharmacology. Here, we present the use of the semiempirical quantum chemistry method SAM1 to rapidly(More)
  • 1