Learn More
Salient stimuli that modify behavior induce transcription of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and transport Arc mRNA into dendrites, suggesting that local Arc translation mediates synaptic plasticity that encodes such stimuli. Here, we demonstrate that long-term synaptic depression (LTD) in hippocampal neurons induced by group(More)
Gq-coupled, M1 muscarinic acetylcholine receptors (mAChRs) facilitate hippocampal learning, memory, and synaptic plasticity. M1 mAChRs induce long-term synaptic depression (LTD), but little is known about the underlying mechanisms of mAChR-dependent LTD and its link to cognitive function. Here, we demonstrate that chemical activation of M1 mAChRs induces(More)
Effective navigation requires planning extended routes to remembered goal locations. Hippocampal place cells have been proposed to have a role in navigational planning, but direct evidence has been lacking. Here we show that before goal-directed navigation in an open arena, the rat hippocampus generates brief sequences encoding spatial trajectories strongly(More)
Fragile X syndrome, as well as other forms of mental retardation and autism, is associated with altered dendritic spine number and structure. Fragile X syndrome is caused by loss-of-function mutations in Fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates protein synthesis in vivo. It is unknown whether FMRP plays a direct,(More)
Local or dendritic protein synthesis is required for long-term functional synaptic change, such as long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD both rely on similar signal transduction cascades, which regulate translation initiation. Current research indicates that the specificity by which new proteins participate in either LTP(More)
The mevalonate pathway produces cholesterol and nonsterol isoprenoids, such as geranylgeraniol. In the brain, a fraction of cholesterol is metabolized in neurons by the enzyme cholesterol 24-hydroxylase, and this depletion activates the mevalonate pathway. Brains from mice lacking 24-hydroxylase excrete cholesterol more slowly, and the tissue compensates by(More)
Fragile X syndrome (FXS), the most common genetic form of mental retardation and autism, is caused by loss-of-function mutations in an RNA-binding protein, Fragile X Mental Retardation Protein (FMRP). Neurons from patients and the mouse Fmr1 knockout (KO) model are characterized by an excess of dendritic spines, suggesting a deficit in excitatory synapse(More)
Fragile X syndrome (FXS) is the most common inherited form of mental retardation and a leading genetic cause of autism. There is increasing evidence in both FXS and other forms of autism that alterations in synapse number, structure, and function are associated and contribute to these prevalent diseases. FXS is caused by loss of function of the Fmr1 gene,(More)
Neuronal circuits produce self-sustaining sequences of activity patterns, but the precise mechanisms remain unknown. Here we provide evidence for autoassociative dynamics in sequence generation. During sharp-wave ripple (SWR) events, hippocampal neurons express sequenced reactivations, which we show are composed of discrete attractors. Each attractor(More)
Hippocampal replays are episodes of sequential place cell activity during sharp-wave ripple oscillations (SWRs). Conflicting hypotheses implicate awake replay in learning from reward and in memory retrieval for decision making. Further, awake replays can be forward, in the same order as experienced, or reverse, in the opposite order. However, while the(More)