Brad A. Bauer

Learn More
Molecular dynamics (MD) simulations are a vital tool in chemical research, as they are able to provide an atomistic view of chemical systems and processes that is not obtainable through experiment. However, large-scale MD simulations require access to multicore clusters or supercomputers that are not always available to all researchers. Recently, scientists(More)
We present results of molecular dynamics simulations of fully hydrated DMPC bilayers performed on graphics processing units (GPUs) using current state-of-the-art non-polarizable force fields and a local GPU-enabled molecular dynamics code named FEN ZI. We treat the conditionally convergent electrostatic interaction energy exactly using the particle mesh(More)
N-Acetyl-β-glucosamine (NAG) is an important moiety of glycoproteins and is involved in many biological functions. However, conformational and dynamical properties of NAG molecules in aqueous solution, the most common biological environment, remain ambiguous due to limitations of experimental methods. Increasing efforts are made to probe structural(More)
—When studying membrane-bound protein receptors , it is necessary to move beyond the current state-of-the-art simulations that only consider small membrane patches and implicit solvent. Limits of traditional computer platforms negatively impact the model's level of realism and the computational scales achievable. On the other hand, multi-core platforms such(More)
We present results of molecular dynamics simulations of a model DPPC-water monolayer using charge equilibration (CHEQ) force fields, which explicitly account for electronic polarization in a classical treatment of intermolecular interactions. The surface pressure, determined as the difference between the monolayer and pure water surface tensions at 323 K,(More)
  • 1