Learn More
Damage to the corticospinal tract is a leading cause of motor disability, for example in stroke or spinal cord injury. Some function usually recovers, but whether plasticity of undamaged ipsilaterally descending corticospinal axons and/or brainstem pathways such as the reticulospinal tract contributes to recovery is unknown. Here, we examined the(More)
In motor neuron disease, the focus of therapy is to prevent or slow neuronal degeneration with neuroprotective pharmacological agents; early diagnosis and treatment are thus essential. Incorporation of needle electromyographic evidence of lower motor neuron degeneration into diagnostic criteria has undoubtedly advanced diagnosis, but even earlier diagnosis(More)
OBJECTIVE Brain machine interfaces (BMIs) that decode control signals from motor cortex have developed tremendously in the past decade, but virtually all rely exclusively on vision to provide feedback. There is now increasing interest in developing an afferent interface to replace natural somatosensation, much as the cochlear implant has done for the sense(More)
A major issue to be addressed in the development of neural interfaces for prosthetic control is the need for somatosensory feedback. Here, we investigate two possible strategies: electrical stimulation of either dorsal root ganglia (DRG) or primary somatosensory cortex (S1). In each approach, we must determine a model that reflects the representation of(More)
PURPOSE To develop an animal model of the effects of vagus nerve stimulation (VNS) on heart rate and respiration in studies of seizure treatment. METHODS Nine rats implanted with ECG, EMG, and VNS electrodes and pulse generator were stimulated with 81 different sets of parameters while they slept in a plethysmographic box. RESULT From cardiorespiratory(More)
Transcranial magnetic stimulation (TMS) of cerebral cortex is a popular technique for the non-invasive investigation of motor function. TMS is often assumed to influence spinal circuits solely via the corticospinal tract. We were interested in possible trans-synaptic effects of cortical TMS on the ponto-medullary reticular formation in the brainstem, which(More)
PURPOSE Absence epilepsy is characterized by 3-Hz generalized spike-and-wave discharges (GSWD) on the electroencephalogram, associated with behavioral arrest. It may be severe, and even in childhood benign absence epilepsy cognitive delay is frequent, yet the metabolic/hemodynamic aspects of this kind of epilepsy have not been established. We aimed to(More)
PURPOSE Absence epilepsy may be severe and is frequently accompanied by cognitive delay, yet its metabolic/hemodynamic aspects have not been established. The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are an isomorphic, predictive, and homologous model of human absence epilepsy. We studied hemodynamic changes related to generalized spike-and-wave(More)
UNLABELLED Injury to the mature motor system drives significant spontaneous axonal sprouting instead of axon regeneration. Knowing the circuit-level determinants of axonal sprouting is important for repairing motor circuits after injury to achieve functional rehabilitation. Competitive interactions are known to shape corticospinal tract axon outgrowth and(More)
Following damage to the motor system (e.g., after stroke or spinal cord injury), recovery of upper limb function exploits the multiple pathways which allow motor commands to be sent to the spinal cord. Corticospinal fibers originate from premotor as well as primary motor cortex. While some corticospinal fibers make direct monosynaptic connections to(More)