Learn More
The leucine-rich repeat is a recently characterized structural motif used in molecular recognition processes as diverse as signal transduction, cell adhesion, cell development, DNA repair and RNA processing. We present here the crystal structure at 2.5 A resolution of the complex between ribonuclease A and ribonuclease inhibitor, a protein built entirely of(More)
Solenoid proteins contain repeating structural units that form a continuous superhelix. This category of proteins conveys the least complicated relationship between a sequence and the corresponding three-dimensional structure. Although solenoid proteins are divided into different classes according to commonly used classification schemes, they share many(More)
Ribonuclease inhibitor is a cytoplasmic protein that tightly binds and inhibits ribonucleases of the pancreatic ribonuclease superfamily. The primary sequence of this inhibitor contains leucine-rich repeats (LRRs); these motifs are present in many proteins that participate in protein-protein interactions and have different functions and cellular locations.(More)
Transition row metal ions are both essential and toxic to microorganisms. Zinc in excess has significant toxicity to bacteria, and host release of Zn(II) at mucosal surfaces is an important innate defence mechanism. However, the molecular mechanisms by which Zn(II) affords protection have not been defined. We show that in Streptococcus pneumoniae(More)
Dengue and related flaviviruses represent a significant global health threat. The envelope glycoprotein E mediates virus attachment to a host cell and the subsequent fusion of viral and host cell membranes. The fusion process is driven by conformational changes in the E protein and is an essential step in the virus life cycle. In this study, we analyzed the(More)
MOTIVATION Nucleo-cytoplasmic trafficking of proteins is a core regulatory process that sustains the integrity of the nuclear space of eukaryotic cells via an interplay between numerous factors. Despite progress on experimentally characterizing a number of nuclear localization signals, their presence alone remains an unreliable indicator of actual(More)
Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific "avirulent" pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed(More)
Regulation of protein function is vital for the control of cellular processes. Proteins are often regulated by allosteric mechanisms, in which effectors bind to regulatory sites distinct from the active sites and alter protein function. Intrasteric regulation, directed at the active site and thus the counterpart of allosteric control, is now emerging as an(More)
L locus resistance (R) proteins are nucleotide binding (NB-ARC) leucine-rich repeat (LRR) proteins from flax (Linum usitatissimum) that provide race-specific resistance to the causal agent of flax rust disease, Melampsora lini. L5 and L6 are two alleles of the L locus that directly recognize variants of the fungal effector AvrL567. In this study, we have(More)
The fusion of a protein of interest to a large-affinity tag, such as the maltose-binding protein (MBP), thioredoxin (TRX), or glutathione-S-transferase (GST), can be advantageous in terms of increased expression, enhanced solubility, protection from proteolysis, improved folding, and protein purification via affinity chromatography. Unfortunately, crystal(More)